Math330 HW3 (Fall 2020)

Professor Youngjoon Hong

Due Date: Sep. 23 (11:59 pm)

Problem 1 Let $\{a_n\}$ a sequence converging to L > 0. We also assume that $\forall n \in \mathbb{N}$, $a_n \ge 0$. Show that the sequence $\sqrt{a_n}$ converges to \sqrt{L} . Hint: if L > 0, then $\sqrt{a_n} - \sqrt{L} = \frac{a_n - L}{\sqrt{a_N} + \sqrt{L}}$.

Problem 2 Let $\{a_n\}$ a sequence converging to L > 0. Show that $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N, a_n > 0$.

Problem 3 Let $\{a_n\}$ a sequence converging to L. Let $\{b_n\}$ a sequence such that $\exists N_b \in \mathbb{R}, \forall n \in \mathbb{N}, n \geq N_b, a_n = b_n$. Show that $\{b_n\}$ converges to L as well.

Problem 4 The following questions will guide you to prove that $\lim_{n\to\infty} n^{1/n} = 1$. 1. Denoting $\alpha_n = n^{1/n} - 1$, explain why

$$\lim_{n \to \infty} n^{1/n} = 1 \iff \lim_{n \to \infty} \alpha_n = 0.$$

2. Using the Binomial formula, show that $\forall n \in \mathbb{N}$,

$$n = (1 + \alpha_n)^n \ge 1 + \frac{n(n-1)}{2}\alpha_n^2.$$

3. Show that $\lim_{n\to\infty} \alpha_n = 0$ and conclude that $\lim_{n\to\infty} n^{1/n} = 1$.