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= Example 2.3
Express
A={xeR/|x—3|>7}

as union of intervals.
Solution: A = set of x whose distance from 3 is at least 7, i.e

A = (—o0,—4]U[10,+o0).

Proposition 2.6.1
Va e R and r € R,r > 0, we have
o {x/|x—a| <r}=(a—r,a+r) (open interval of length 2r centered at a),
o {x/|x—a| <r}=[a—r,a+r](closed interval of length 2r centered at a).
In particular, {x/|x| < r} = (—rr) and {x/|x| < r} = [—-nr].

Proof. Ya € Rand r € R,r > 0, pick a point x in {x/|x —a| < r} then:

x—al<re -—r<x—a<r (2.7)

Sa—-r<x<a+tr (2.8)

S x€(a—rna+r) (2.9)

which proves the first statement. The second statement is obtained in the same way by changing <

by <. The particular cases are obtained by setting a = 0. |
Proposition 2.6.2

Va,b € R, |ab|=|a|.|b|

Proof. We need to consider four cases:
1. a>0and b >0,
2.a>0and b <0,
3.a<0and b >0,
4. a<0and b <0.
For each case, we have
. |a| = a and |b| = b and ab > 0 thus |ab| = ab = |a|.|b|,
. |la| =a and |b| = —b and ab < 0 thus |ab| = —ab = a.(—b) = |a|.|b|,
. |a| = —a and |b| = b and ab < 0 thus |ab| = —ab = (—a).b = |a|.|b|,
. |a| = —a and |b| = —b and ab > 0 thus |ab| = ab = (—a).(—b) = |a|.|b|,

AW N =

Theorem 2.6.3 — Triangle inequality

Va,b € R, la+b| < |a| + |b|.

Proof. Since
a=lal or a=—|d

and
b=1|b| or b=—|b|,
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we have
—lal <a<lal and —|b| < b < |b.

Therefore,
—la|—|b| <a+b <|a|+|b|

& —(la[+1b]) <a+b <|a[+|b|.
Let ¢ = |a| + |b| and d = a+ b, we have

& |d <c

< |la+b| < |a|+ b

|
Corollary 2.6.4
Va,b € R, ]a|—\b[‘§|a—b\.
Proof. By the triangle inequality, we have
la| = la—b+b| < |a—b|+|b]
so that
la| —|b] < |a—bl.
Similarly,
bl =[b—a+a| <|b—al+]a| = |a—b[+]a|
so that
|b| —la| < la—b| < |a| = |b] = —|a—b].
Thus
—la—b| <la|—[b| < |a—b| !al—b|’ <la—b|.

|

The Archimedean property of R

We will assume known the principle of mathematical induction.

Theorem 2.7.1
Let S be a subset of N. Assume that N € Sandn+1 € Sifn € S. Then

S={neN/n>N}.

In particular, if 1 € S and n € S implies that n+ 1 € S then S = N.

Definition 2.7.1
A subset R of R is said to be well-ordered if each nonempty subset of R has a smallest element.
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Proposition 2.7.2
The set N is well-ordered.

Proof. We use a proof by contradiction:

Assume § is a nonempty subset of N that does NOT have a smallest element. Let 7 denote the
complement of S in N. We will show that 7 = N which contradicts the fact that S is nonempty.

If 1 € S then 1 is the smallest element. Therefore, 1 ¢ Sand 1 € T.

Let T’ be the subset of T consisting of all n € T such that 1,2,3,...,n € T'. We need to show that
n+1¢eT as well.

Assume this is not the case, thus n+1 € S. Since 1,2,3,...,n € T, which is the complement of
S, the number n + 1 must be the smallest element of S. But we assumed that S does not have a
smallest element. Thus n+ 1 € T'. Therefore T’ = N implying T = N, thus S is empty and we get
our contradiction and conclude that § must have a smallest element. |

Definition 2.7.2
Let S be a subset of R. We say that S has the Archimedean property if Vx € S,3n € N such
that x < n.

= Example 2.4

Q has the Archimedean property. Indeed, let x € Q and x < 1 then we can set n = 2. If
x > 0, we can write x = p/q where p,g € N. Thus p > 1,q > 1 & é <l&e § < p. Therefore,
x:§§p<p+L

Proposition 2.7.3
R has the Archimedean property.

The proof of this proposition is out of the scope of this course.

Proposition 2.7.4
Vx,y € R,x >0,y > 0,3dn € N such that nx > y.
In particular, Vx € R, x > 0,3m € N such that # < x.

Proof. Letx,y € R,x>0,y> 0 and denote z = 2. By the Archimedean property of R, 3n € N such
that n > z = . Thus nx > y.
In particular, Vx > 0,3m € N such that mx > 1 thus x > % |



