Example 2.3

Express

 $A = \{x \in \mathbb{R} / |x - 3| \ge 7\}$

as union of intervals.

Solution: A = set of x whose distance from 3 is at least 7, i.e.

$$A = (-\infty, -4] \cup [10, +\infty).$$

Proposition 2.6.1 $\forall a \in \mathbb{R} \text{ and } r \in \mathbb{R}, r > 0$, we have • $\{x/|x-a| < r\} = (a-r,a+r)$ (open interval of length 2r centered at a), • $\{x/|x-a| \le r\} = [a-r,a+r]$ (closed interval of length 2r centered at a). In particular, $\{x/|x| < r\} = (-r,r)$ and $\{x/|x| \le r\} = [-r,r]$.

Proof. $\forall a \in \mathbb{R}$ and $r \in \mathbb{R}$, r > 0, pick a point x in $\{x/|x-a| < r\}$ then:

$$|x-a| < r \Leftrightarrow -r < x-a < r \tag{2.7}$$

$$\Leftrightarrow a - r < x < a + r \tag{2.8}$$

$$\Leftrightarrow x \in (a - r, a + r) \tag{2.9}$$

which proves the first statement. The second statement is obtained in the same way by changing < by \leq . The particular cases are obtained by setting a = 0.

Proposition 2.6.2

$$\forall a, b \in \mathbb{R}, \quad |ab| = |a|.|b|$$

Proof. We need to consider four cases:

1. $a \ge 0$ and $b \ge 0$,

2. $a \ge 0$ and $b \le 0$,

- 3. $a \leq 0$ and $b \geq 0$,
- 4. $a \le 0$ and $b \le 0$.

For each case, we have

1. |a| = a and |b| = b and $ab \ge 0$ thus $|ab| = ab = |a| \cdot |b|$,

- 2. |a| = a and |b| = -b and $ab \le 0$ thus $|ab| = -ab = a \cdot (-b) = |a| \cdot |b|$,
- 3. |a| = -a and |b| = b and $ab \le 0$ thus |ab| = -ab = (-a).b = |a|.|b|,
- 4. |a| = -a and |b| = -b and $ab \ge 0$ thus $|ab| = ab = (-a) \cdot (-b) = |a| \cdot |b|$,

 $\forall a, b \in \mathbb{R}, \qquad |a+b| \le |a| + |b|.$

Proof. Since

a = |a| or a = -|a|

and

b = |b| or b = -|b|,

we have

$$-|a| \le a \le |a|$$
 and $-|b| \le b \le |b|$.

Therefore,

$$\begin{split} -|a|-|b| &\leq a+b \leq |a|+|b| \\ \Leftrightarrow -\left(|a|+|b|\right) \leq a+b \leq |a|+|b|. \end{split}$$

Let c = |a| + |b| and d = a + b, we have

$$-c \le d \le c$$
$$\Leftrightarrow |d| \le c$$
$$\Leftrightarrow |a+b| \le |a|+|b|$$

Corollary 2.6.4

$$orall a,b\in\mathbb{R}, \qquad ig|a|-|b|ig|\leq |a-b|.$$

Proof. By the triangle inequality, we have

$$|a|=|a-b+b|\leq |a-b|+|b|$$

so that

 $|a| - |b| \le |a - b|.$

Similarly,

$$|b| = |b - a + a| \le |b - a| + |a| = |a - b| + |a|$$

 $|b|-|a| \leq |a-b| \Leftrightarrow |a|-|b| \geq -|a-b|.$

so that

Thus

$$||a-b| \le |a| - |b| \le |a-b| \Leftrightarrow \left| |a| - |b| \right| \le |a-b|.$$

2.7 The Archimedean property of \mathbb{R}

We will assume known the principle of mathematical induction.

Theorem 2.7.1 Let *S* be a subset of \mathbb{N} . Assume that $N \in S$ and $n + 1 \in S$ if $n \in S$. Then

$$S = \{n \in \mathbb{N} / n \ge N\}.$$

In particular, if $1 \in S$ and $n \in S$ implies that $n + 1 \in S$ then $S = \mathbb{N}$.

Definition 2.7.1

A subset *R* of \mathbb{R} is said to be **well-ordered** if each nonempty subset of *R* has a smallest element.

Proposition 2.7.2 The set \mathbb{N} is well-ordered.

Proof. We use a proof by contradiction:

Assume *S* is a nonempty subset of \mathbb{N} that does NOT have a smallest element. Let *T* denote the complement of *S* in \mathbb{N} . We will show that $T = \mathbb{N}$ which contradicts the fact that *S* is nonempty.

If $1 \in S$ then 1 is the smallest element. Therefore, $1 \notin S$ and $1 \in T$.

Let T' be the subset of T consisting of all $n \in T$ such that $1, 2, 3, ..., n \in T'$. We need to show that $n+1 \in T'$ as well.

Assume this is not the case, thus $n + 1 \in S$. Since $1, 2, 3, ..., n \in T$, which is the complement of *S*, the number n + 1 must be the smallest element of *S*. But we assumed that *S* does not have a smallest element. Thus $n + 1 \in T'$. Therefore $T' = \mathbb{N}$ implying $T = \mathbb{N}$, thus *S* is empty and we get our contradiction and conclude that *S* must have a smallest element.

Definition 2.7.2

Let *S* be a subset of \mathbb{R} . We say that *S* has the **Archimedean property** if $\forall x \in S, \exists n \in \mathbb{N}$ such that x < n.

■ Example 2.4

 \mathbb{Q} has the Archimedean property. Indeed, let $x \in \mathbb{Q}$ and $x \le 1$ then we can set n = 2. If x > 0, we can write x = p/q where $p, q \in \mathbb{N}$. Thus $p \ge 1, q \ge 1 \Leftrightarrow \frac{1}{q} \le 1 \Leftrightarrow \frac{p}{q} \le p$. Therefore, $x = \frac{p}{q} \le p < p+1$.

Proposition 2.7.3

 \mathbb{R} has the Archimedean property.

The proof of this proposition is out of the scope of this course.

Proposition 2.7.4 $\forall x, y \in \mathbb{R}, x > 0, y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$ In particular, $\forall x \in \mathbb{R}, x > 0, \exists m \in \mathbb{N} \text{ such that } \frac{1}{m} < x.$

Proof. Let $x, y \in \mathbb{R}, x > 0, y > 0$ and denote $z = \frac{y}{x}$. By the Archimedean property of $\mathbb{R}, \exists n \in \mathbb{N}$ such that $n > z = \frac{y}{x}$. Thus nx > y. In particular, $\forall x > 0, \exists m \in \mathbb{N}$ such that mx > 1 thus $x > \frac{1}{m}$.