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� Example 2.3
Express

A = {x ∈ R/|x−3| ≥ 7}
as union of intervals.
Solution: A = set of x whose distance from 3 is at least 7, i.e

A = (−∞,−4]∪ [10,+∞).

Proposition 2.6.1
∀a ∈ R and r ∈ R,r > 0, we have
• {x/|x−a|< r}= (a− r,a+ r) (open interval of length 2r centered at a),
• {x/|x−a| ≤ r}= [a− r,a+ r] (closed interval of length 2r centered at a).

In particular, {x/|x|< r}= (−r,r) and {x/|x| ≤ r}= [−r,r].

Proof. ∀a ∈ R and r ∈ R,r > 0, pick a point x in {x/|x−a|< r} then:

|x−a|< r⇔−r < x−a < r (2.7)

⇔ a− r < x < a+ r (2.8)

⇔ x ∈ (a− r,a+ r) (2.9)

which proves the first statement. The second statement is obtained in the same way by changing <
by ≤. The particular cases are obtained by setting a = 0. �

Proposition 2.6.2

∀a,b ∈ R, |ab|= |a|.|b|

Proof. We need to consider four cases:
1. a≥ 0 and b≥ 0,
2. a≥ 0 and b≤ 0,
3. a≤ 0 and b≥ 0,
4. a≤ 0 and b≤ 0.

For each case, we have
1. |a|= a and |b|= b and ab≥ 0 thus |ab|= ab = |a|.|b|,
2. |a|= a and |b|=−b and ab≤ 0 thus |ab|=−ab = a.(−b) = |a|.|b|,
3. |a|=−a and |b|= b and ab≤ 0 thus |ab|=−ab = (−a).b = |a|.|b|,
4. |a|=−a and |b|=−b and ab≥ 0 thus |ab|= ab = (−a).(−b) = |a|.|b|,

�

Theorem 2.6.3 — Triangle inequality

∀a,b ∈ R, |a+b| ≤ |a|+ |b|.

Proof. Since
a = |a| or a =−|a|

and
b = |b| or b =−|b|,
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we have
−|a| ≤ a≤ |a| and −|b| ≤ b≤ |b|.

Therefore,
−|a|− |b| ≤ a+b≤ |a|+ |b|

⇔ −(|a|+ |b|)≤ a+b≤ |a|+ |b|.
Let c = |a|+ |b| and d = a+b, we have

−c≤ d ≤ c

⇔ |d| ≤ c

⇔ |a+b| ≤ |a|+ |b|.
�

Corollary 2.6.4

∀a,b ∈ R,
∣∣∣∣|a|− |b|∣∣∣∣≤ |a−b|.

Proof. By the triangle inequality, we have

|a|= |a−b+b| ≤ |a−b|+ |b|

so that
|a|− |b| ≤ |a−b|.

Similarly,
|b|= |b−a+a| ≤ |b−a|+ |a|= |a−b|+ |a|

so that
|b|− |a| ≤ |a−b| ⇔ |a|− |b| ≥ −|a−b|.

Thus

−|a−b| ≤ |a|− |b| ≤ |a−b| ⇔
∣∣∣∣|a|− |b|∣∣∣∣≤ |a−b|.

�

2.7 The Archimedean property of R
We will assume known the principle of mathematical induction.

Theorem 2.7.1
Let S be a subset of N. Assume that N ∈ S and n+1 ∈ S if n ∈ S. Then

S = {n ∈ N/n≥ N}.

In particular, if 1 ∈ S and n ∈ S implies that n+1 ∈ S then S = N.

Definition 2.7.1
A subset R of R is said to be well-ordered if each nonempty subset of R has a smallest element.
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Proposition 2.7.2
The set N is well-ordered.

Proof. We use a proof by contradiction:
Assume S is a nonempty subset of N that does NOT have a smallest element. Let T denote the
complement of S in N. We will show that T = N which contradicts the fact that S is nonempty.
If 1 ∈ S then 1 is the smallest element. Therefore, 1 /∈ S and 1 ∈ T .
Let T ′ be the subset of T consisting of all n ∈ T such that 1,2,3, . . . ,n ∈ T ′. We need to show that
n+1 ∈ T ′ as well.
Assume this is not the case, thus n+1 ∈ S. Since 1,2,3, . . . ,n ∈ T , which is the complement of
S, the number n+ 1 must be the smallest element of S. But we assumed that S does not have a
smallest element. Thus n+1 ∈ T ′. Therefore T ′ = N implying T = N, thus S is empty and we get
our contradiction and conclude that S must have a smallest element. �

Definition 2.7.2
Let S be a subset of R. We say that S has the Archimedean property if ∀x ∈ S,∃n ∈ N such
that x < n.

� Example 2.4
Q has the Archimedean property. Indeed, let x ∈ Q and x ≤ 1 then we can set n = 2. If
x > 0, we can write x = p/q where p,q ∈ N. Thus p≥ 1,q≥ 1⇔ 1

q ≤ 1⇔ p
q ≤ p. Therefore,

x = p
q ≤ p < p+1.

Proposition 2.7.3
R has the Archimedean property.

The proof of this proposition is out of the scope of this course.

Proposition 2.7.4
∀x,y ∈ R,x > 0,y > 0,∃n ∈ N such that nx > y.
In particular, ∀x ∈ R,x > 0,∃m ∈ N such that 1

m < x.

Proof. Let x,y ∈R,x > 0,y > 0 and denote z = y
x . By the Archimedean property of R,∃n ∈N such

that n > z = y
x . Thus nx > y.

In particular, ∀x > 0,∃m ∈ N such that mx > 1 thus x > 1
m . �


