
3. Sequences and limits

3.1 Sequences
Definition 3.1.1
A sequence is a function whose domain is a subset of integers of the form {N0,N0+1,N0+2, . . .}
where N0 ∈ N. If we refer to this function as f , then f (n) is usually denoted an for n =
N0,N0 +1,N0 +2, . . . The term an is called the n−th term of the sequence.

R We may write aN0 ,aN0+1,aN0+2, . . . or {an}∞
n=N0

or simply {an} if the starting value N0 is
straightforward.

� Example 3.1
The sequence

1;
1
2

;
1
3

;
1
4

; . . . ;
1
n

; . . .

can be denoted
{1

n

}∞

n=1 or
{1

n

}
.

� Example 3.2
The sequence

5;
6
2

;
7
3

;
8
4

; . . .

can be denoted
{ n

n−4

}∞

n=5
.

R The index n is a “dummy index” and can be replaced by any other letter, i.e
{ 1

n

}∞

n=1 =
{ 1

k

}∞

k=1.
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Definition 3.1.2
The graph of a sequence {an}∞

n=N0
is the set of points of coordinates (n,an) in the Cartesian

plane, where n = N0,N0 +1,N0 +2, . . .
The range of the sequence {an}∞

n=N0
is the range of the function f such that f (n) = an,n≥ N0.

� Example 3.3
Let an =

n
n−4 for n= 5,6,7, . . . The graph of {an}∞

n=5 is the set of points {(5,5),(6,3),(7,7/3), . . .}
and is represented in the Cartesian plane on the left of Figure. 3.1 while the right plot shows the
representation along the real line.
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Figure 3.1: Graphs of the sequence an =
n

n−4 for n = 5;6; . . . ;25 used in Example 3.3. The left
graph is the Cartesian graph. The right graph is the plot along the real line.

3.2 Limits
Intuitively, the notion of limits can be defined in the following way: L is said to be the limit of {an}
if an is as close to L as desired, provided that n is sufficiently large. A precise definition of a limit is
given by

Definition 3.2.1
The limit of the sequence {an} is L if

∀ε > 0,∃N ∈ N,∀n ∈ N,n≥ N, |an−L|< ε,

we write
lim
n→∞

an = L.

R Note that in the general case, N depends on the choice of ε . It is sometimes denoted N(ε) or
Nε .

Geometric interpretation: the quantity |an−L|< ε is equivalent to L− ε < an < L+ ε . Therefore,
the previous definition corresponds to the fact that for n large enough (n≥ N) all values an belong
to the interval (L− ε,L+ ε) (see Figure 3.2). Because ε is an arbitrary number, in particular we
can choose it as small as we want, i.e we can shrink the interval as we want up to get the singleton
{L}.
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Figure 3.2: Geometric interpretation of the limit of a sequence.

� Example 3.4
Show that the limit of

{ n
n−4

}∞

n=5
is L = 1.

Solution: we want to show that ∀ε > 0,∃N ∈ N,N ≥ 5,∀n ∈ N,n≥ N, |an−1|< ε .
We have

|an−1|=
∣∣∣∣ n
n−4

−1
∣∣∣∣= ∣∣∣∣n−n+4

n−4

∣∣∣∣= 4
n−4

≤
(n≥N)

4
N−4

.

Given ε > 0, if we choose N such that 4
N−4 < ε then we automatically have |an−1|< ε . But,

we have
4

N−4
< ε ⇔ 4

ε
< N−4⇔ N >

4
ε
+4

Therefore any N such that N > 4
ε
+4 works (and it exists because R is Archimedean). Finally,

we can write
lim
n→∞

n
n−4

= 1.

Proposition 3.2.1
The limit of a sequence is unique.

Proof. Assume limn→∞ an = L1 and limn→∞ an = L2. We want to prove that L1 = L2 by showing
that ∀ε > 0, |L1−L2|< ε .
Using the definition of a limit, we have, ∀ε > 0,

∃N1 ∈ N,∀n ∈ N,n≥ N1, |an−L1|<
ε

2
and

∃N2 ∈ N,∀n ∈ N,n≥ N2, |an−L2|<
ε

2
.

Therefore, if we set N = max(N1,N2), we have

|aN−L1|<
ε

2
and |aN−L2|<

ε

2
.

Thus

|L1−L2|= |(L1−aN)+(aN−L2)| ≤
triangle inequality

|L1−aN |+ |L2−aN |<
ε

2
+

ε

2
= ε.

�
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Definition 3.2.2
A subsequence of a sequence {an}∞

n=1 is formed by selecting the terms an that correspond to the
values of n taken as a strictly increasing sequence: if

n1 < n2 < n3 < .. . < nk < nk+1 < .. .

is a strictly increasing sequence of integers, the corresponding sequence {ank}∞
k=1 is a subse-

quence of {an}∞
n=1.

� Example 3.5
Let

{an}∞
n=1 =

{
(−1)n+1 1

n

}∞

n=1
= 1;−1

2
;
1
3

;−1
4

;
1
5

;−1
6

; . . . .

The subsequence of {an} corresponding to odd values of n is obtained by setting

{nk}∞
k=1 = {2k−1}∞

k=1 = 1;3;5;7; . . .

The corresponding subsequence is

{ank}∞
k=1 =

{
(−1)nk+1 1

nk

}∞

k=1
=

{
(−1)2k−1+1 1

2k−1

}∞

k=1
=

{
1

2k−1

}∞

k=1
= 1;

1
3

;
1
5

;
1
7

; . . .

To get the subsequence corresponding to even values of n, we set

{nk}∞
k=1 = {2k}∞

k=1 = 2;4;6; . . .

and the corresponding subsequence is

{ank}∞
k=1 =

{
(−1)nk+1 1

nk

}∞

k=1
=

{
(−1)2k+1 1

2k

}∞

k=1
=

{
− 1

2k

}∞

k=1
=−1

2
;−1

4
;−1

6
; . . .

Proposition 3.2.2
Let {an} be a sequence converging to a limit L. Then all subsequences {ank} of {an} converge
to L as well.

Proof. Let {ank}∞
k=1 be a subsequence of {an}∞

n=1. Since we assume that limn→∞ an = L, we have

∀ε > 0,∃N ∈ N,∀n≥ N, |an−L|< ε.

Thus there exists K ∈N such that ∀k≥ K,nk ≥ N (because the set n1,n2, . . . is increasing) such that
|ank −L|< ε . Finally, this statement reduces to

∀ε > 0,∃K ∈ N,∀k ≥ K, |ank −L|< ε

which is equivalent to write
lim
k→∞

ank = L.

�


