5. Continuity of functions

5.1 Formal definitions

The notion of continuity of a function can be easily defined from the notion of limits.

Definition 5.1.1

A function $f: D \rightarrow R \subset \mathbb{R}$ is said to be continuous at $x_{0} \in D$ if

$$
\begin{gathered}
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \\
\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \forall x \in D,\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
\end{gathered}
$$

or equivalently

$$
\forall \varepsilon>0, \exists \delta>0, \forall h \in D,|h|<\delta \Rightarrow\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right|<\varepsilon
$$

Therefore, every technique used to find limits can be used to prove continuity.
Definition 5.1.2
A function $f: D \rightarrow R \subset \mathbb{R}$ is said to be continuous on its domain if it is continuous $\forall x_{0} \in D$.

- Example 5.1

Show that $f(x)=x^{2}$ is continuous over \mathbb{R}.
Solution: we need to show

$$
\forall x_{0} \in \mathbb{R}, \forall \varepsilon>0, \exists \delta>0, \forall x \in \mathbb{R},\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

We have

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{2}-x_{0}^{2}\right|=\left|\left(x+x_{0}\right)\left(x-x_{0}\right)\right|=\left|x+x_{0}\right|\left|x-x_{0}\right| \leq\left(|x|+\left|x_{0}\right|\right)\left|x-x_{0}\right|
$$

Given the fact that we want $x \rightarrow x_{0}$, we can consider $x_{0}-1<x<x_{0}+1 \Leftrightarrow\left|x-x_{0}\right|<1$. Thus,

$$
\begin{gathered}
|x|=\left|x-x_{0}+x_{0}\right| \leq\left|x-x_{0}\right|+\left|x_{0}\right|<1+\left|x_{0}\right| \\
\Rightarrow|x|+\left|x_{0}\right|<1+2\left|x_{0}\right| .
\end{gathered}
$$

Therefore

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left(|x|+\left|x_{0}\right|\right)\left|x-x_{0}\right|<\left(1+2\left|x_{0}\right|\right)\left|x-x_{0}\right| .
$$

In order to get $\forall \varepsilon>0,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$, it is sufficient to choose $\left(1+2\left|x_{0}\right|\right)\left|x-x_{0}\right|<\varepsilon \Leftrightarrow \mid x-$ $x_{0} \left\lvert\,<\frac{\varepsilon}{1+2\left|x_{0}\right|}\right.$. Remember that we also need to have $\left|x-x_{0}\right|<1$, we can set $\delta=\min \left(1, \frac{\varepsilon}{1+2\left|x_{0}\right|}\right)$ and we get

$$
\begin{aligned}
\forall x_{0} \in \mathbb{R}, \forall \varepsilon>0, \exists \delta>0, \delta= & \min \left(1, \frac{\varepsilon}{1+2\left|x_{0}\right|}\right), \forall x \in \mathbb{R},\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon . \\
& \forall x_{0} \in \mathbb{R}, \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
\end{aligned}
$$

i.e $f(x)=x^{2}$ is continuous $\forall x_{0} \in \mathbb{R}$.

Definition 5.1.3 - Left and Right continuity.

- A function $f: D \rightarrow R \subset \mathbb{R}$ is said to be continuous on the left at $x_{0} \in D$ if

$$
\begin{gathered}
\lim _{x \rightarrow x_{0}-} f(x)=f\left(x_{0}\right) . \\
\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \forall x \in D, x_{0}-\delta<x<x_{0} \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon .
\end{gathered}
$$

- A function $f: D \rightarrow R \subset \mathbb{R}$ is said to be continuous on the right at $x_{0} \in D$ if

$$
\begin{gathered}
\lim _{x \rightarrow x_{0}+} f(x)=f\left(x_{0}\right) . \\
\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \forall x \in D, x_{0}<x<x_{0}+\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon .
\end{gathered}
$$

(R)Note that f is continuous at x_{0} if f is continuous on the right and the left at x_{0}, i.e

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \Leftrightarrow\left(\lim _{x \rightarrow x_{0}+} f(x)=f\left(x_{0}\right)\right) \wedge\left(\lim _{x \rightarrow x_{0}-} f(x)=f\left(x_{0}\right)\right) .
$$

- Example 5.2

Let $\forall x \geq 0, f(x)=\sqrt{x}$. Show that f is continuous on $[0,+\infty)$.
Solution: We need to consider two cases: the continuity of f when $x_{0} \in(0,+\infty)$ and at the endpoint 0 . Let us start with the first case: we want to prove that $\forall x_{0} \in(0,+\infty), \lim _{x \rightarrow x_{0}} \sqrt{x}=$ $\sqrt{x_{0}}$, i.e

$$
\forall x_{0} \in(0,+\infty), \forall \varepsilon>0, \exists \delta>0, \forall x \in(0,+\infty),\left|x-x_{0}\right|<\delta \Rightarrow\left|\sqrt{x}-\sqrt{x_{0}}\right|<\varepsilon .
$$

But

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\left|\left(\sqrt{x}-\sqrt{x_{0}}\right) \frac{\sqrt{x}+\sqrt{x_{0}}}{\sqrt{x}+\sqrt{x_{0}}}\right|=\left|\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}}\right| .
$$

We also have

$$
\sqrt{x}+\sqrt{x_{0}}>\sqrt{x_{0}} \Leftrightarrow \frac{1}{\sqrt{x}+\sqrt{x_{0}}}<\frac{1}{\sqrt{x_{0}}}
$$

Thus

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\left|\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}}\right|<\frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}
$$

In order to get $\forall \varepsilon>0,\left|\sqrt{x}-\sqrt{x_{0}}\right|<\varepsilon$, we can choose $\frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}<\varepsilon \Leftrightarrow\left|x-x_{0}\right|<\varepsilon \sqrt{x_{0}}$. Therefore,

$$
\begin{gathered}
\forall x_{0} \in(0,+\infty), \forall \varepsilon>0, \exists \delta>0, \forall x \in(0,+\infty),\left|x-x_{0}\right|<\delta \Rightarrow\left|\sqrt{x}-\sqrt{x_{0}}\right|<\varepsilon \\
\Leftrightarrow \forall x_{0} \in(0,+\infty), \lim _{x \rightarrow x_{0}} \sqrt{x}=\sqrt{x_{0}}
\end{gathered}
$$

and we get that f is continuous at all $x_{0} \in(0,+\infty)$.
We now check the continuity at the endpoint 0 : we want to prove that $\lim _{x \rightarrow 0+} \sqrt{x}=\sqrt{0}=0$, i.e

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in(0,+\infty), 0<x<0+\delta \Rightarrow|\sqrt{x}-0|<\varepsilon
$$

Since we are interested when $x \rightarrow 0+$, we have $x>0$. On the other hand, we have $|\sqrt{x}-0|=\sqrt{x}$ thus in order to have $\forall \varepsilon>0,|\sqrt{x}-0|<\varepsilon$ we can choose $\sqrt{x}<\varepsilon \Leftrightarrow x<0+\varepsilon^{2}$. Therefore, if we set $\delta=\varepsilon^{2}$ we have

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in(0,+\infty), 0<x<0+\delta \Rightarrow|\sqrt{x}-0|<\varepsilon \Leftrightarrow \lim _{x \rightarrow 0+} f(x)=f(0)
$$

and we get that f is continuous on the right at 0 .
Finally, we conclude that f is continuous on $[0,+\infty)$.

5.2 Continuity and convergence of sequences

We can also characterize continuity by the limit of sequences:

Proposition 5.2.1 - Sequential characterization of continuity.

Let a function $f: D \rightarrow \mathbb{R}\left(D\right.$ being an open interval) and a point $x_{0} \in D$. Then f is continuous at $x_{0} \Leftrightarrow$ for any sequence $\left\{x_{n}\right\}$ where $\forall n \in \mathbb{N}, x_{n} \in D$ and such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Proof. It is a direct consequence of the sequential characterization of limits.
(R)

This theorem is equivalent to state that if f is continuous at x_{0} then for any sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)
$$

This theorem is useful to prove that a function is not continuous at a point x_{0}. Indeed, its contraposition states that if

$$
\exists\left\{x_{n}\right\},\left(\lim _{n \rightarrow \infty} x_{n}=x_{0}\right) \wedge\left(\lim _{n \rightarrow \infty} f\left(x_{n}\right) \text { does not exists }\right)
$$

then f is discontinuous at x_{0}.

- Example 5.3

Let

$$
f(x)= \begin{cases}-1 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

Show that f is discontinuous at 0 .
Solution: we will find a sequence $\left\{x_{n}\right\}$ which converges to 0 but where $\left\{f\left(x_{n}\right)\right\}$ does not converge, i.e there exists two subsequences $\left\{x_{1, n}\right\}$ and $\left\{x_{2, n}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f\left(x_{1, n}\right) \neq$ $\lim _{n \rightarrow \infty} f\left(x_{2, n}\right)$.
Consider the sequence

$$
\forall n \in \mathbb{N}, x_{n}=(-1)^{n} \frac{1}{n}
$$

Clearly, $\lim _{n \rightarrow \infty} x_{n}=0$ but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ does not converge. Indeed, if we consider the two subsequences for odd and even n, we have:

- if n is even then $\forall k \in \mathbb{N}, n=2 k$ and $x_{2 k}=(-1)^{2 k} \frac{1}{2 k}=\frac{1}{2 k}>0$ thus $\forall k \in \mathbb{N}, f\left(x_{2 k}\right)=1 \Rightarrow$ $\lim _{k \rightarrow \infty} f\left(x_{2 k}\right)=1$.
- if n is odd then $\forall k \in \mathbb{N}, n=2 k-1$ and $x_{2 k-1}=(-1)^{2 k-1} \frac{1}{2 k-1}=-\frac{1}{2 k}<0$ thus $\forall k \in$ $\mathbb{N}, f\left(x_{2 k-1}\right)=-1 \Rightarrow \lim _{k \rightarrow \infty} f\left(x_{2 k-1}\right)=-1$.
Therefore, f is discontinuous at 0 .

5.3 Uniform continuity

When we use the formal definition of continuity, the variable δ generally depends on x_{0}. Uniform continuity is the special case when we can find a value for δ which will work for all x_{0}, i.e δ does not depend on x_{0}. This leads to the following definition.

Definition 5.3.1

A function f is said to be uniformly continuous on an interval $D \subset \mathbb{R}$ if and only if

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta>0, \forall x_{1}, x_{2} \in D,\left|x_{2}-x_{1}\right|<\delta \Rightarrow\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\varepsilon . \\
\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \forall x \in D, \forall h, x+h \in D,|h|<\delta \Rightarrow|f(x+h)-f(x)|<\varepsilon .
\end{aligned}
$$

Example 5.4

Let $f(x)=\frac{1}{x}$. Show that f is uniformly continuous on $[1 / 2,+\infty)$.
$\underline{\text { Solution: We need to prove that }}$

$$
\forall \varepsilon>0, \exists \delta, \forall x_{1} \geq \frac{1}{2}, \forall x_{2} \geq \frac{1}{2},\left|x_{1}-x_{2}\right|<\delta \Rightarrow\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\varepsilon
$$

Assume that $x_{1} \geq 1 / 2$ and $x_{2} \geq 1 / 2$. We have

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|\frac{1}{x_{2}}-\frac{1}{x_{1}}\right|=\left|\frac{x_{1}-x_{2}}{x_{1} x_{2}}\right|=\left|\frac{x_{2}-x_{1}}{x_{1} x_{2}}\right|
$$

Since $x_{1} \geq 1 / 2$ and $x_{2} \geq 1 / 2$, we have $x_{1} x_{2} \geq 1 / 4 \Leftrightarrow \frac{1}{x_{1} x_{2}} \leq 4$. Thus

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|\frac{x_{2}-x_{1}}{x_{1} x_{2}}\right| \leq 4\left|x_{2}-x_{1}\right|
$$

