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⌅ Example 5.3
Let

f (x) =

(
�1 ifx < 0
1 ifx � 0

.

Show that f is discontinuous at 0.
Solution: we will find a sequence {xn} which converges to 0 but where { f (xn)} does not
converge, i.e there exists two subsequences {x1,n} and {x2,n} of {xn} such that limn!• f (x1,n) 6=
limn!• f (x2,n).
Consider the sequence

8n 2 N,xn = (�1)n 1
n
.

Clearly, limn!• xn = 0 but limn!• f (xn) does not converge. Indeed, if we consider the two
subsequences for odd and even n, we have:

• if n is even then 8k 2 N,n = 2k and x2k = (�1)2k 1
2k =

1
2k > 0 thus 8k 2 N, f (x2k) = 1 )

limk!• f (x2k) = 1.
• if n is odd then 8k 2 N,n = 2k � 1 and x2k�1 = (�1)2k�1 1

2k�1 = � 1
2k < 0 thus 8k 2

N, f (x2k�1) =�1 ) limk!• f (x2k�1) =�1.
Therefore, f is discontinuous at 0.

5.3 Uniform continuity
When we use the formal definition of continuity, the variable d generally depends on x0. Uniform
continuity is the special case when we can find a value for d which will work for all x0, i.e d does
not depend on x0. This leads to the following definition.

Definition 5.3.1
A function f is said to be uniformly continuous on an interval D ⇢ R if and only if

8e > 0,9d > 0,8x1,x2 2 D, |x2 � x1|< d ) | f (x2)� f (x1)|< e.

,8e > 0,9d > 0,8x 2 D,8h,x+h 2 D, |h|< d ) | f (x+h)� f (x)|< e.

⌅ Example 5.4
Let f (x) = 1

x . Show that f is uniformly continuous on [1/2,+•).
Solution: We need to prove that

8e > 0,9d ,8x1 �
1
2
,8x2 �

1
2
, |x1 � x2|< d ) | f (x2)� f (x1)|< e.

Assume that x1 � 1/2 and x2 � 1/2. We have

| f (x2)� f (x1)|=
����

1
x2

� 1
x1

����=
����
x1 � x2

x1x2

����=
����
x2 � x1

x1x2

���� .

Since x1 � 1/2 and x2 � 1/2, we have x1x2 � 1/4 , 1
x1x2

 4. Thus

| f (x2)� f (x1)|=
����
x2 � x1

x1x2

���� 4|x2 � x1|.
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In order to have 8e > 0, | f (x2)� f (x1)| < e , we can choose 4|x2 � x1| < e , |x2 � x1| < e
4 .

Therefore, if we set d = e
4 we get

8e > 0,9d ,d =
e
4
,8x1 �

1
2
,8x2 �

1
2
, |x1 � x2|< d ) | f (x2)� f (x1)|< e

, f is uniformly continuous on [1/2,+•).

Theorem 5.3.1 — Sequential characterization of uniform continuity
A function f : D ! R is uniformly continuous on D if and only if

8{un} 2 D,8{vn} 2 D, lim
n!•

(un � vn) = 0 ) lim
n!•

( f (un)� f (vn)) = 0.

Proof. ): Assume f is uniformly continuous and let {un} and {vn} two sequences of elements of
D such that limn!•(un � vn) = 0. We need to show that limn!•( f (un)� f (vn)) = 0.
Since f is uniformly continuous, we have

8e > 0,9d > 0,8x1,x2 2 D, |x1 � x2|< d ) | f (x1)� f (x2)|< e.

Since limn!•(un � vn) = 0, we have

9N 2 N,8n 2 N,n � N, |un � vn|< d .

Therefore,

8e > 0,9N 2 N,8n 2 N,n � N, |un � vn|< d ) | f (un)� f (vn)|< e

, lim
n!•

( f (un)� f (vn)) = 0.

(: Assume that

8{un} 2 D,8{vn} 2 D, lim
n!•

(un � vn) = 0 ) lim
n!•

( f (un)� f (vn)) = 0.

We proceed by contradiction: assume that f is not uniformly continuous, i.e

9e > 0,8d > 0,9x1,x2 2 D,(|x2 � x1|< d )^ (| f (x2)� f (x1)|� e).

Choose two sequences {un} and {vn} such that limn!•(un � vn) = 0 thus

9N 2 N,8n 2 N,n � N, |un � vn|< d ^ | f (un)� f (vn)|� e.

, lim
n!•

( f (un)� f (vn)) 6= 0.

This contradict the initial assumption. Therefore f must be uniformly continuous. ⌅

As with the standard continuity, the sequential characterization of uniform continuity is useful in
practice to prove that a function is not uniformly continuous. By the contraposition of the previous
theorem, it is sufficient to find two sequences such limn!•(un � vn) = 0 and limn!•( f (un)�
f (vn)) 6= 0 to prove that f is not uniformly continuous.

⌅ Example 5.5
Let 8x 6= 0, f (x) = 1

x . Show that f is not uniformly continuous on (0,1].
Solution: Choose un =

1
n and vn =

1
n+1 . Then

lim
n!•

(un � vn) = lim
n!•

✓
1
n
� 1

n+1

◆
= 0.
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But f (un)� f (vn) = n� (n+ 1) = �1 thus limn!•( f (un)� f (vn)) = �1 6= 0. Therefore f is
not uniformly continuous on (0,1].

5.3.1 Properties of continuity
In this subsection, we study the continuity of basic functions and the algebra of continuity. Here,
we only give the result statements, their corresponding proofs will be part of the next homework
assignment.

Proposition 5.3.2
A constant function is continuous over R.

Proof. Let 8x 2 R, f (x) = c where c 2 R is constant. We want to prove that

8x0 2 R,8e > 0,9d > 0,8x 2 R, |x� x0|< d ) | f (x)� f (x0)|< e.

But we have f (x)� f (x0)|= |c� c|= 0 thus we can arbitrarily choose d > 0 and will always have
8e > 0, | f (x)� f (x0)|< e . ⌅

Proposition 5.3.3
Let the function 8n 2 N,8x 2 R, fn(x) = xn. Then fn is continuous over R.

Proof. See homework. ⌅

Theorem 5.3.4
Let f and g be two functions continuous at x0 then

• f +g is continuous at x0,
• f g is continuous at x0,
• f/g is continuous at x0 providing that g(x0) 6= 0.

Proof. See homework. ⌅

Proposition 5.3.5
A polynomial is continuous over R.

Proof. See homework. ⌅

Proposition 5.3.6
A rational function is continuous on its domain of definition.

Proof. See homework. ⌅

Proposition 5.3.7
Trigonometric functions (those defined over R) and the exponential are continuous over R, the
logarithm function is continuous over (0,+•).

Proof. The corresponding proofs need some tools which will be studied later. ⌅
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Theorem 5.3.8
Assume that f is continuous at x0 and g is continuous at f (x0). Then the composite function
g� f is continuous at x0.

Proof. Since g is continuous at f (x0), we have

8e > 0,9d1 > 0,8x, | f (x)� f (x0)|< d1 ) |g( f (x))�g( f (x0))|< e.

On the other, since f is continuous at x0, we have

8d1 > 0,9d > 0,8x, |x� x0|< d ) | f (x)� f (x0)|< d1.

Therefore,
8e > 0,9d > 0,8x, |x� x0|< d ) |g( f (x))�g( f (x0))|< e

, g� f is continuous at x0. ⌅

Corollary 5.3.9
Let f : D ! R and let x0 (eventually not contained in D) such that limx!x0 f (x) = L. Assume
that g is continuous at L. Then

lim
x!x0

g( f (x)) = g(L) = g
✓

lim
x!x0

f (x)
◆
.

Proof. Left as an exercise. ⌅

⌅ Example 5.6
Find

lim
x!2

sin
✓

p(x2 �4)
(x�2)

◆
.

Solution: Since the sin function is continuous over R, we have

lim
x!2

sin
✓

p(x2 �4)
(x�2)

◆
= sin

✓
lim
x!2

p(x2 �4)
(x�2)

◆
.

But

lim
x!2

p(x2 �4)
(x�2)

= lim
x!2

p(x�2)(x+2)
(x�2)

= lim
x!2

p(x+2) = 4p.

Therefore

lim
x!2

sin
✓

p(x2 �4)
(x�2)

◆
= sin(4p) = 0.

5.4 Consequences of continuity
5.4.1 Extreme value theorem

Theorem 5.4.1 — Extreme value theorem
Assume that f is continuous on a closed and bounded interval [a,b]. Then f is bounded and
attains its (absolute) maximum and minimum values on [a,b].
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Proof. First let us show that f is bounded. We proceed by contradiction: assume that f is not
bounded then

8n 2 N,9xn 2 [a,b], | f (xn)|� n.

If we consider the sequence {xn}, it is clear that this sequence is bounded (since all its elements are
in a bounded interval). Then from the Bolzano-Weierstrass theorem, we know that there exists a
converging subsequence {xnk} such that

lim
k!•

xnk = x0 2 [a,b].

Since f is continuous, from the sequential characterization of continuity, we have that

lim
n!•

f (xn) = f (x0).

This is in contradiction with the assumption that the sequence { f (xnk)} does not converge. Thus f
must be bounded.
Now, we need to prove that f attains its maximum and minimum. Since we proved that f is
bounded, the quantity

M = sup{ f (x)/x 2 [a,b]} and m = inf{ f (x)/x 2 [a,b]}

exist and are finite. Assume that f does not attain its maximum M then the function 1
M� f (x) will be

defined and from the properties of continuity, it will be continuous over [a,b]. Following the same
steps as in the first part of this proof, we can show that the function 1

M� f (x) is bounded. Therefore,

8x 2 [a,b],9a > 0, |M� f (x)|� a.

In consequence, we have 8x 2 [a,b], f (x)  M �a . This contradicts the fact that M is the least
upper bound. Then necessarily f attains its maximum M. In the same way, we can establish that f
attains its minimum m. ⌅

⌅ Example 5.7

a bm

M

a b

M

The function plotted on left fulfills the theorem’s assumptions and clearly the function is bounded
and its maximum and minimum values are attained (M and m). On the right, the function is
discontinuous and in that case, the function does not attain its maximum value.

5.4.2 Intermediate value theorem
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Theorem 5.4.2 — Intermediate Value Theorem
Let a function f continuous over an arbitrary interval I (it can be open, closed or semi-open;
bounded or not). Denote M = sup f (I) and m = inf f (I) (note that these quantities can eventually
be infinite). Then f takes all values in (m,M), i.e

8y 2 (m,M),9x 2 I, f (x) = y.

Proof. First note, that the Extreme Value Theorem cannot be used since I is not necessarily a closed
bounded interval.
The case f (x) =C (constant) is obvious since m = M =C.
Consider that m 6= M. From the properties of sup and inf, 8y 2 (m,M),9a,b 2 I,m  f (a)< y <
f (b) M. Assume that a < b (the case b < a can be treated in a similar way).

a bm

M

a bm

M

y

J
c

f(a) f(a)

f(b) f(b)

y

Denote J = {x/ f (x) y}. Clearly, J ⇢ [a,b] and a 2 J thus J 6=? and is bounded above (b is an
upper bound). Hence c = supJ exists.
Consider the sequence {xn} such that 8n 2 N,c� 1

n  xn  c. We have

c = lim
n!•

✓
c� 1

n

◆
 lim

n!•
xn  lim

n!•
c = c ) lim

n!•
xn = c.

Since f is continuous, we have

lim
n!•

f (xn) = f
⇣

lim
n!•

xn

⌘
= f (c) y.

On the other hand, 8x 2 (c,b], f (x)> y, then limx!c+ f (x)> limx!c+ y = y. Since f is continuous,
we have that limx!c+ f (x) = limx!c f (x) = f (c) but f (c) can eventually be equal to y thus we get
f (c)� y and finally f (c) = y. Therefore, we obtained that

8y 2 (m,M),9x 2 I, f (x) = y.

⌅

Corollary 5.4.3
The image of an arbitrary interval I ⇢ R by a continuous function f is an interval J = f (I) of R

Proof. Left as an exercise. Using the notation of the previous proof, show that J is either
[m,M],(m,M], [m,M) or (m,M). ⌅

Proposition 5.4.4
The image of a closed and bounded interval I ⇢ R by a continuous function is a closed and
bounded interval.

Proof. It is a direct consequence of the extreme value theorem and intermediate value theorem. ⌅


