6. Derivatives

6.1 Derivative of a function

Definition 6.1.1

Let a function $f(x)$ defined over an open domain D. Let $x_{0} \in D$. The derivative of f at x_{0}, and denoted $f^{\prime}\left(x_{0}\right)$, is defined by

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

providing that the limit exists.
Geometric interpretation: the quantity $\frac{f\left(x_{0}\right)-f\left(x_{0}\right)}{h}$ corresponds to the slope of the chord passing through the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{0}+h, f\left(x_{0}+h\right)\right.$) (see left of figure below). When $h \rightarrow 0$, the behavior corresponds to the right of the figure, i.e the chord becomes the tangent line of f at x_{0}.

- Example 6.1

Let $f(x)=3 x^{2}+4$, prove that $f^{\prime}(1)=6$.

Solution: We need to prove that

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=6
$$

We have,

$$
\frac{f(1+h)-f(1)}{h}=\frac{\left(3(1+h)^{2}+4\right)-7}{h}=\frac{3\left(1+2 h+h^{2}\right)-3}{h}=\frac{6 h+3 h^{2}}{h}=6+3 h .
$$

Therefore,

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0}(6+3 h)=6 .
$$

Definition 6.1.2

If the derivative of f at a point x_{0} exists then f is said to be differentiable at x_{0}.

Proposition 6.1.1

Assume that f is differentiable at x_{0} then f is continuous at x_{0}.
Proof. We have

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=\left(\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right) h
$$

then

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+\left(\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right) h
$$

Thus

$$
\begin{aligned}
\lim _{h \rightarrow 0} f\left(x_{0}+h\right) & =\lim _{h \rightarrow 0} f\left(x_{0}\right)+\lim _{h \rightarrow 0}\left(\left(\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right) h\right) \\
& =\lim _{h \rightarrow 0} f\left(x_{0}\right)+\left(\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right)\left(\lim _{h \rightarrow 0} h\right)
\end{aligned}
$$

Since f is differentiable, $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right)$ (finite). On the other hand $\lim _{h \rightarrow 0} f\left(x_{0}\right)=$ $f\left(x_{0}\right)$ hence

$$
\lim _{h \rightarrow 0} f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\lim _{h \rightarrow 0} h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \times 0=f\left(x_{0}\right)
$$

Therefore f is continuous at x_{0}.
(R)
T. The fact that is continuous does NOT provide that f is differentiable.

For instance, consider $f(x)=|x|$. We have $\lim _{x \rightarrow 0-}|x|=\lim _{x \rightarrow 0-}(-x)=0$ and $\lim _{x \rightarrow 0+}|x|=$ $\lim _{x \rightarrow 0+}(x)=0$ thus $\lim _{x \rightarrow 0}|x|=0=f(0) \Leftrightarrow f$ is continuous at $x=0$.
On the other hand:

$$
\lim _{h \rightarrow 0-} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0-} \frac{|0+h|+|0|}{h}=\lim _{h \rightarrow 0-} \frac{|h|}{h}=\lim _{h \rightarrow 0-} \frac{-h}{h}=-1
$$

and

$$
\lim _{h \rightarrow 0+} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0+} \frac{|0+h|+|0|}{h}=\lim _{h \rightarrow 0+} \frac{|h|}{h}=\lim _{h \rightarrow 0+} \frac{h}{h}=1
$$

Therefore $\lim _{h \rightarrow 0+} \frac{f(0+h)-f(0)}{h} \neq \lim _{h \rightarrow 0-} \frac{f(0+h)-f(0)}{h}$, i.e $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ does not exist thus $f(x)=|x|$ is not differentiable at $x=0$.

Definition 6.1.3
Let a function $f(x): D \rightarrow R \subset \mathbb{R}$. The associated derivative function $f^{\prime}(x): D^{\prime} \rightarrow R^{\prime} \subset \mathbb{R}$ is defined as

$$
\forall x \in D^{\prime}, f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

where $D^{\prime} \subseteq D$ is the set of points where the limit exists.

It is usual to say " $f^{\prime}(x)$ is the derivative of f ".

- Example 6.2

Let $f(x)=x^{2}$, find the derivative $f^{\prime}(x)$.
Solution: we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-x^{2}}{h} & =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
$$

Notice that this calculus is defined $\forall x \in \mathbb{R}$ therefore $\forall x \in \mathbb{R}, f^{\prime}(x)=2 x$.

6.2 Leibniz notation

Given a variable, for instance x, a "variation" of that variable is usually denoted by using Δ as a prefix to the variable, i.e Δx in our example. In the previous derivative definition, h represents a variation of x, so we can replace h by Δx. In the same way, $f(x+h)-f(x)$ represents the variation of f when we apply a variation $h=\Delta x$, so we can denote $\Delta f=f(x+h)-f(x)$. Therefore, the derivative definition can be restated as (Leibniz notation)

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\frac{d f(x)}{d x} .
$$

Note that the notation $\frac{d f}{d x}$ does NOT mean that we take the ratio of two quantities $d f$ and $d x$. The use of a lowercase d simply means that we consider a limit process.

Notation 6.1. When we want to designate the derivative at a specific point x_{0}, we use the following notation:

$$
\left.\frac{d f(x)}{d x}\right|_{x=x_{0}}
$$

6.3 Properties of derivatives

Proposition 6.3.1 - Derivative of a constant.
Let $f(x)=c$ (constant) then $f^{\prime}(x)=0$.
Proof. We have,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=0 .
$$

Proposition 6.3.2 - Power rule.

For all $x \in \mathbb{R}$ or eventually $x \in \mathbb{R} /\{0\}$, we have

$$
\forall n \in \mathbb{Z},\left(x^{n}\right)^{\prime}=n x^{n-1} .
$$

Proof. If $n=0$, we have $\forall x \in \mathbb{R}, x^{n}=x^{0}=1$ then from the previous proposition, (1$)^{\prime}=0$ and the rule works as long we interpret $(0)\left(x^{-1}\right)=0$.
Let $n \in \mathbb{Z}^{+}$, we have

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} .
$$

Using the binomial formula, we get

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{n}+n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\ldots+h^{n}\right)-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(n x^{n-1}+\frac{n(n-1)}{2} x^{n-2} h+\ldots+h^{n-1}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(n x^{n-1}+\frac{n(n-1)}{2} x^{n-2} h+\ldots+h^{n-1}\right)=n x^{n-1} .
\end{aligned}
$$

The case $n \in \mathbb{Z}^{-}$is equivalent to consider $n \in \mathbb{Z}^{+}$and x^{-n}. Assume that $x \neq 0$, then we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{(x+h)^{-n}-x^{-n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{(x+h)^{n}}-\frac{1}{x^{n}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{n}-(x+h)^{n}}{(x+h)^{n} x^{n}}\right) \\
& =\lim _{h \rightarrow 0}\left[\left(-\frac{(x+h)^{n}-x^{n}}{h}\right)\left(\frac{1}{(x+h)^{n} x^{n}}\right)\right] \\
& =\left[-\lim _{h \rightarrow 0}\left(\frac{(x+h)^{n}-x^{n}}{h}\right)\right]\left[\lim _{h \rightarrow 0}\left(\frac{1}{(x+h)^{n} x^{n}}\right)\right] \\
& =\left(-n x^{n-1}\right)\left(\frac{1}{x^{2 n}}\right)=-n x^{-n-1}
\end{aligned}
$$

Proposition 6.3.3 - Multiplication by a constant.

Let $c \in \mathbb{R}$ a constant and a function $f(x)$ differentiable at x, we have

$$
(c f)^{\prime}(x)=c f^{\prime}(x)
$$

Proof. See homework

Proposition 6.3.4 - Sum rule.
Let $f(x)$ and $g(x)$ differentiable at x. Then $f+g$ is differentiable at x and we have

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

Proof. See homework

Corollary 6.3.5

Let f and g be two functions differentiable at x and let $c_{1} \in \mathbb{R}$ and $c_{2} \in \mathbb{R}$ two constants. Then $c_{1} f+c_{2} g$ is differentiable at x and we have

$$
\left(c_{1} f+c_{2} g\right)^{\prime}(x)=c_{1} f^{\prime}(x)+c_{2} g^{\prime}(x)
$$

Proof. See homework

Proposition 6.3.6 - Product rule.

Let f and g be two differentiable functions at x. Then the product $f g$ is differentiable at x and we have

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Proof. See homework

Proposition 6.3.7 — Derivative of a reciprocal.

Let a differentiable function $f: D \rightarrow R \subset \mathbb{R}$ such that $\forall x \in D, f(x) \neq 0$. Then $1 / f$ is also differentiable at x and

$$
\left(\frac{1}{f}\right)^{\prime}(x)=-\frac{f^{\prime}(x)}{f^{2}(x)}
$$

Proof. We have

$$
\begin{aligned}
\left(\frac{1}{f}\right)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{f(x+h)}-\frac{1}{f(x)}}{h} & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{f(x+h)}-\frac{1}{f(x)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{f(x)-f(x+h)}{f(x+h) f(x)}\right) \\
& =\lim _{h \rightarrow 0}\left[\left(-\frac{f(x+h)-f(x)}{h}\right)\left(\frac{1}{f(x+h) f(x)}\right)\right] \\
& =\left(-\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{f(x+h) f(x)}\right)
\end{aligned}
$$

But

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)
$$

and

$$
\lim _{h \rightarrow 0} \frac{1}{f(x+h) f(x)}=\frac{1}{f^{2}(x)}
$$

Therefore

$$
\left(\frac{1}{f}\right)^{\prime}(x)=-\frac{f^{\prime}(x)}{f(x)}
$$

Proposition 6.3.8 - Quotient rule.

Let f and g be two differentiable functions at x and assume that $g(x) \neq 0$. Then we have

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

Proof. We use the product rule and the derivative of a reciprocal rule:

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}(x)=\left(f \cdot \frac{1}{g}\right)^{\prime}(x) & =f^{\prime}(x) \frac{1}{g(x)}+f(x)\left(\frac{1}{g}\right)^{\prime}(x) \\
& =f^{\prime}(x) \frac{1}{g(x)}+f(x)\left(-\frac{g^{\prime}(x)}{g^{2}(x)}\right) \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
\end{aligned}
$$

6.4 Local linear approximations

We saw previously that the derivative of f at x_{0} corresponds to the slope of the tangent line to f at x_{0}. Its equation is given by

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

Then we have the following definition.
Definition 6.4.1
The linear approximation of f at x_{0} (sometimes called the basepoint) is given by

$$
L_{x_{0}}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

- Example 6.3

Let $f(x)=2 x^{2}+5 x-3$. Find the linear approximation of f at 1 .
Solution: We have $f^{\prime}(x)=4 x+5$ then $f^{\prime}(1)=9$ and $f(1)=2+5-3=4$. Therefore

$$
L_{1}(x)=4+9(x-1)=9 x-5
$$

We can compute the absolute error between f and its approximation when we move away from $x_{0}:\left|f(1+h)-L_{1}(1+h)\right|:$

$$
\begin{aligned}
\left|f(1+h)-L_{1}(1+h)\right| & =\left|2(1+h)^{2}+5(1+h)-3-9(1+h)+5\right| \\
& =\left|2\left(1+2 h+h^{2}\right)+5+5 h-3-9-9 h+5\right|=2 h^{2}
\end{aligned}
$$

Thus when we stay close to 1 , the error stays small while if we move further from 1 , it increases. This why it is a local approximation.
The function f and its approximation L_{1} are illustrated in Figure 6.1 for different zooms.

Theorem 6.4.1

Let $f: D \rightarrow R \subset \mathbb{R}$ where D is an open interval. Let a point $x_{0} \in D$. Let L be the line with slope

Figure 6.1: $f(x)$ and its local linear approximation $L_{1}(x)$ for different zooms.
m passing through $\left(x_{0}, f\left(x_{0}\right)\right): L(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)$. If

$$
f\left(x_{0}+h\right)=L\left(x_{0}+h\right)+h Q_{x_{0}}(h)
$$

where $\lim _{h \rightarrow 0} Q_{x_{0}}(h)=0$ then the function f is differentiable at x_{0} and $m=f^{\prime}\left(x_{0}\right)$, i.e $L(x)=$ $L_{x_{0}}(x)$.

Proof. We have $L(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)$, thus

$$
L\left(x_{0}+h\right)=f\left(x_{0}\right)+m\left(x_{0}+h-x_{0}\right)=f\left(x_{0}\right)+m h .
$$

Therefore,

$$
f\left(x_{0}+h\right)-L\left(x_{0}+h\right)=f\left(x_{0}+h\right)-f\left(x_{0}\right)-m h
$$

If we denote

$$
h Q_{x_{0}}(h)=f\left(x_{0}+h\right)-f\left(x_{0}\right)-m h,
$$

we have

$$
Q_{x_{0}}(h)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-m .
$$

Then,

$$
\lim _{h \rightarrow 0} Q_{x_{0}}(h)=\lim _{h \rightarrow 0}\left(\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-m\right) .
$$

Thus if $\lim _{h \rightarrow 0} Q_{x_{0}}(h)=0$, we get $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=m$ since m is finite, the limit is finite thus f is differentiable and we have $m=f^{\prime}\left(x_{0}\right)$ and $L(x)=L_{x_{0}}(x)$.

6.5 Higher-order derivatives

Since the derivative of f, f^{\prime}, is a function itself, we can consider the derivative of f^{\prime}.

Definition 6.5.1

The second-order derivative of f is defined and denoted by

$$
f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime} \quad \text { or } \quad \frac{d^{2} f(x)}{d x^{2}}=\frac{d}{d x}\left(\frac{d f(x)}{d x}\right)
$$

Of course the domain of definition of $f^{\prime \prime}$ must be adapted in consequence.
The second-order derivative is also itself a function and we can consider its derivative, i.e the third-order derivative of f. This reasoning can be iterated as many time as we want and lead to the definition of the k-th order derivative of f.

Definition 6.5.2

The k-th order derivative of f is defined by taking k successively times the derivative of f and is denoted by

$$
f^{(k)}(x)=\left(f^{(k-1)}(x)\right)^{\prime}=\left(\ldots(f(x))^{\prime} \ldots\right)^{\prime} \quad \text { or } \quad \frac{d^{k} f(x)}{d x^{k}}=\frac{d}{d x}\left(\ldots\left(\frac{d}{d x}\left(\frac{d f(x)}{d x}\right)\right) \ldots\right)
$$

Note the use of parenthesis in $f^{(k)}$ to distinguish between a k-th order and a k-th power.

6.6 The differential of a function and some of its consequences

We saw previously that we can rewrite the definition of a derivative as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} .
$$

If we consider $|\Delta x|$ small, an approximation of $f^{\prime}(x)$ is given by

$$
\begin{gathered}
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}, \\
\Leftrightarrow f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x
\end{gathered}
$$

The left-hand side represents the increment of f when we add Δx to the basepoint x. Then the increment of f is a function of two variables: x and Δx. This quantity is called the differential of f :

Definition 6.6.1

The differential of f at the basepoint x and with increment Δx is denoted and defined by

$$
d f(x, \Delta x)=f^{\prime}(x) \Delta x
$$

Therefore, if $|\Delta x|$ is small, we have

$$
f(x+\Delta x)-f(x) \approx d f(x, \Delta x)
$$

Then we can restate Theorem 6.4.1 with this change of notation (the proof follows the same steps).

Theorem 6.6.1

Assume f is differentiable at x. Then

$$
f(x+\Delta x)-f(x)=d f(x, \Delta x)+\Delta x Q_{x}(\Delta x)
$$

where $\lim _{\Delta x \rightarrow 0} Q_{x}(\Delta x)=0$.

Notation 6.2. Traditionally, Δx is denoted $d x$: $d f(x, d x)=f^{\prime}(x) d x=\frac{d f(x)}{d x} d x=\frac{d f}{d x} d x$.

- Example 6.4

Let $f(x)=\frac{1}{x^{2}}$. Express the differential of f and give an approximation of $f(2.1)$.
Solution: We have

$$
d f(x, d x)=f^{\prime}(x) d x=-\frac{2}{x^{3}} d x
$$

On the other hand, we can write $2.1=2+0.1$, thus let $x=2$ and $d x=0.1$ thus

$$
f(2.1)-f(2) \approx d f(2,0.1)=-\frac{2}{2^{3}} \times 0.1
$$

Therefore:

$$
f(2.1) \approx f(2)-0.025=\frac{1}{4}-0.025=0.25-0.025=0.225
$$

By a calculator, we get $f(2.1) \approx 0.22675737$ then our approximation makes an absolute error of $\approx 1.76 .10^{-3}$.

The previous theorem helps to prove the well known chain rule to find the derivative of a composite function.

Theorem 6.6.2 - Chain rule

Assume that g is differentiable at x and f is differentiable at $g(x)$. Then $f \circ g$ is differentiable at x and we have

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Proof. By definition,

$$
(f \circ g)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(g(x+\Delta x))-f(g(x))}{\Delta x}
$$

Let denote $u=g(x)$ and $\Delta u=g(x+\Delta x)-g(x)$ thus $g(x+\Delta x)=u+\Delta u$. We have (using Theorem 6.6.1),

$$
\begin{aligned}
f(g(x+\Delta x))-f(g(x))=f(u+\Delta u)-f(u) & =d f(u, \Delta u)+\Delta u Q_{u}(\Delta u) \\
& =f^{\prime}(u) \Delta u+\Delta u Q_{u}(\Delta u)
\end{aligned}
$$

where $\lim _{\Delta u \rightarrow 0} Q_{u}(\Delta u)=0$. Therefore,

$$
\frac{f(g(x+\Delta x))-f(g(x))}{\Delta x}=\frac{f^{\prime}(u) \Delta u+\Delta u Q_{u}(\Delta u)}{\Delta x}=f^{\prime}(u) \frac{\Delta u}{\Delta x}+\frac{\Delta u}{\Delta x} Q_{u}(\Delta u)
$$

and we get

$$
\lim _{\Delta x \rightarrow 0} \frac{f(g(x+\Delta x))-f(g(x))}{\Delta x}=\left(\lim _{\Delta x \rightarrow 0} f^{\prime}(u)\right)\left(\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}\right)+\left(\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}\right)\left(\lim _{\Delta x \rightarrow 0} Q_{u}(\Delta u)\right) .
$$

Now, we address each term separately:

- $\lim _{\Delta x \rightarrow 0} f^{\prime}(u)=\lim _{\Delta x \rightarrow 0} f^{\prime}(g(x))=f^{\prime}(g(x))\left(\right.$ since $f^{\prime}(g(x))$ does not depends on $\left.\Delta x\right)$,

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}=g^{\prime}(x)
$$

- since g is differentiable, it is continuous thus $\lim _{\Delta x \rightarrow 0} \Delta u=\lim _{\Delta x \rightarrow 0}(g(x+\Delta x)-g(x))=$ $g(x)-g(x)=0$, i.e when $\Delta x \rightarrow 0$ we have $\Delta u \rightarrow 0$ as well. Therefore,

$$
\lim _{\Delta x \rightarrow 0} Q_{u}(\Delta u)=\lim _{\Delta u \rightarrow 0} Q_{u}(\Delta u)=0
$$

Using these results, we finally get

$$
\lim _{\Delta x \rightarrow 0} \frac{f(g(x+\Delta x))-f(g(x))}{\Delta x}=f^{\prime}(g(x)) g^{\prime}(x)+g^{\prime}(x)(0)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Another consequence is the formula to get the derivative of an inverse function.

