6.1

(6. Derivatives

Derivative of a function
Definition 6.1.1
Let a function f(x) defined over an open domain D. Let xy € D. The derivative of f at xo, and
denoted f’(xo), is defined by

providing that the limit exists.

Geometric interpretation: the quantity i corresponds to the slope of the chord passing
through the points (xo, f(x0)) and (xo + A, f(xo + 1)) (see left of figure below). When i — 0, the
behavior corresponds to the right of the figure, i.e the chord becomes the tangent line of f at xq.

(x0)—f(x0)
h

4

F(zg + h) — f(20)

= Example 6.1
Let f(x) = 3x> + 4, prove that f'(1) = 6.
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Solution: We need to prove that

14+h)—
L FAR =)
h—0 h
‘We have,
f(l+n) —f(1) GB+h)?+4) -7 3(1+2h+h*)—3 6h+3h?
= = = =6+ 3h.
h h h h
Therefore,
. L+h)—f(1) .
(1) = —f( = lim(6+3h) = 6.
F) hl—r>r(1) h hl—I>I(1)( 34)
I ——
Definition 6.1.2
If the derivative of f at a point xq exists then f is said to be differentiable at xp.
Proposition 6.1.1
Assume that f is differentiable at x( then f is continuous at x.
Proof. We have
xo+h) — f(x
fxo+h) = f(x0) = (f( - 21 7l O)>h,
e Flao+1) = f o)
Xo+n) — f(x
f(x0+h):f(xo)+< - I O)h-
Thus
. . : f(xo+h) — f(x)
| h)=1 1 h
hl—%f(xo +h) hgr(l)f(xo) +hl—% (< h
L - fxo+h)— f(x0) (.
e R [ (L
Since f is differentiable, limy,_, % f'(x0) (finite). On the other hand limy,_,o f(xg) =

f(xo) hence

}lli_rf(l)f(xo +h)= f(xo) +fI(X()) (}P_I}%h) = f(xo) -{—f/(XQ) x 0= f(xp).

Therefore f is continuous at xg. |
,;g‘ The fact that f is continuous does NOT provide that f is differentiable.

For instance, consider f(x) = |x|. We have lim,_,o_ |x| =lim,_— (—x) =0 and lim, o |x| =
limy_,0+ (x) = 0 thus lim,_,0 |x| = 0 = f(0) < f is continuous at x = 0.

On the other hand:
0+h)—f(0 0+hl+10 h —h
o LOEN = F©) o 0ROl e h
h—0— h h—0— h Chs0— b hs0- h
and 0+h 0 0+h|+10 h
1imw lim w lim ||:1m7—1.
h—0+ h h—0+ h =0+ h —0+ h
Therefore limy,_, o £0+1)-1(0) 2 limy,_,o_ w, i.e limy_.o M does not exist

thus f(x) = |x| is not differentiable at x = 0.
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Definition 6.1.3
Let a function f(x) : D — R C R. The associated derivative function f'(x) : D' — R’ C R is

defined as ,
Vre D, f(x) = lim L0 = S0,
h—0 h

where D' C D is the set of points where the limit exists.

® It is usual to say “f’(x) is the derivative of /.

= Example 6.2
Let f(x) = x°, find the derivative f’(x).
Solution: we have

_ 2 2 2 2 2 2
limf(x—i-h) f(x) — lim (x+h)*—x —lim © +2hx+h" —x :hm2hx+h
h—0 h h—0 h h—0 h h—0 h
= lim(2x+h) = 2x.
h—0

Notice that this calculus is defined Vx € R therefore Vx € R, f(x) = 2x.

Leibniz notation

Given a variable, for instance x, a “variation” of that variable is usually denoted by using A as a
prefix to the variable, i.e Ax in our example. In the previous derivative definition, /# represents a
variation of x, so we can replace & by Ax. In the same way, f(x+ h) — f(x) represents the variation
of f when we apply a variation 7 = Ax, so we can denote Af = f(x+h) — f(x). Therefore, the
derivative definition can be restated as (Leibniz notation)

Af _df(x)

"(x) = lim =% =
fl) = Jlim =

Note that the notation % does NOT mean that we take the ratio of two quantities d f and dx.
The use of a lowercase d simply means that we consider a limit process.

Notation 6.1. When we want to designate the derivative at a specific point xo, we use the following

notation:
df(x)
dx

X=X0

Properties of derivatives

Proposition 6.3.1 — Derivative of a constant.
Let f(x) = ¢ (constant) then f'(x) = 0.

Proof. We have,
f'(x) = lim Y im EE —o.
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Proposition 6.3.2 — Power rule.
For all x € R or eventually x € R/{0}, we have

Vn€Z,(x") = n" !,

Proof. If n =0, we have Vx € R, x* = x” = 1 then from the previous proposition, (1)’ = 0 and the
rule works as long we interpret (0)(x~!) = 0.
Letn € Z*, we have

_ n__n
limf()c-i-h) fx) — lim (x+h)"—x '
h—0 h h—0
Using the binomial formula, we get
h) — " —x"
i JEHA) —fx) L bR -t
h—0 h h—0 h
(x” 4+ Th+ @x”_zh2 +... +h”) —x"
= lim
h—0 h
h (nx”*l + @xnﬁh +...+ h"*l)
= lim
h—0 h
—1
= lim <nx"1 + MXHH " +h’“> ="
h—0 2

The case n € Z~ is equivalent to consider n € Z" and x™". Assume that x # 0, then we have

" fx+h)— f(x) — lim (x+h)""—x"
h—0 h h—0 h

“tmi (i)

- ()

“im | () (i)

= () i ()|

1
= (—nx" 1) <xZn> nx !

Proposition 6.3.3 — Multiplication by a constant.
Let ¢ € R a constant and a function f(x) differentiable at x, we have

(cf) (x) =cf'(x).

Proof. See homework |
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Proposition 6.3.4 — Sum rule.
Let f(x) and g(x) differentiable at x. Then f + g is differentiable at x and we have

(f+8)(x) =f'(x)+8&(x).

Proof. See homework [ |

Corollary 6.3.5
Let f and g be two functions differentiable at x and let ¢; € R and ¢, € R two constants. Then
c1 f + cpg is differentiable at x and we have

(c1f +c28)'(x) = c1f (x) + 28 (x).
Proof. See homework |
Proposition 6.3.6 — Product rule.

Let f and g be two differentiable functions at x. Then the product fg is differentiable at x and
we have

(f8)'(x) = f(x)g(x) + f(x)g (x).

Proof. See homework |

Proposition 6.3.7 — Derivative of a reciprocal.
Let a differentiable function f : D — R C R such that Vx € D, f(x) # 0. Then 1/f is also

differentiable at x and ,
1Y (g — S0
f fHx)
Proof. We have

1/ e — _1 1
() (x) = Jim 270 _ L
f h—0 h h—0 h

- _hmf@+h%aﬂ@>< ! )
h—0 h—0 f(x+h)f(x)
But h
}lig(l)f(x"‘ ;)l_f(X) —f'(x),
and
. 1 _ 1
0 fat ) f) )
Therefore
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Proposition 6.3.8 — Quotient rule.
Let f and g be two differentiable functions at x and assume that g(x) # 0. Then we have

A\ F@e) - F0g )
(§> W=""""0m

Proof. We use the product rule and the derivative of a reciprocal rule:

(ch)'m _ (f.;)'w W)+ (;)

— 1) 1) (-5

_|_

g(x) g% (%)
_ fx)g(x) — f(x)g'(x)
g2 (x) '

6.4 Local linear approximations

We saw previously that the derivative of f at x( corresponds to the slope of the tangent line to f at
Xo. Its equation is given by

y = f(x0) + £ (x0) (x — xo).
Then we have the following definition.

Definition 6.4.1
The linear approximation of f at xo (sometimes called the basepoint) is given by

Ly (x) = f(x0) + f'(x0) (x — x0).

= Example 6.3
Let f(x) = 2x? + 5x — 3. Find the linear approximation of f at 1.
Solution: We have f'(x) =4x+5 then f'(1) =9 and f(1) =2+ 5 — 3 = 4. Therefore

Li(x)=44+9(x—1) =9 —5.

We can compute the absolute error between f and its approximation when we move away from
xo: [f(1+h)—Li(1+h)|:

|fF(1+h) —Li(1+h)| =20 +h)* +5(1 +h) —3—-9(1+h) +5]|
= 2(14-2h+h?) +5+5h—3—9—9h 45| =2i°.
Thus when we stay close to 1, the error stays small while if we move further from 1, it increases.

This why it is a local approximation.

The function f and its approximation L, are illustrated in Figure 6.1 for different zooms.
I EEEEE——————

Theorem 6.4.1
Let f: D — R C R where D is an open interval. Let a point xy € D. Let L be the line with slope
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Figure 6.1: f(x) and its local linear approximation L, (x) for different zooms.

m passing through (xo, f(x0)): L(x) = f(x0) +m(x —xp). If
f(xo + h) = L(X() + h) -+ tho (h)

where limy,_,o Qx, (k) = 0 then the function f is differentiable at xo and m = f’(xo), i.e L(x) =
Ly, (x).

Proof. We have L(x) = f(xo) +m(x —xo), thus
L(xo+ h) = f(XQ) + m(X() +h—xp) = f(X()) + mh.

Therefore,
f(x0+h) —L(xo+h) = f(xo+h) — f(xo) — mh.

If we denote
hQx,(h) = f(xo+h) — f(x0) — mh,

we have
0. () = f(XO+h2l —flxo)
Then,
1im 0, () = lim <f(x0 +h})l — f(xo) _m) ‘
Thus if limy,_0 Qx, (h) = 0, we get limy,_,o w = m since m is finite, the limit is finite thus
f is differentiable and we have m = f’(x¢) and L(x) = Ly, (x). [

Higher-order derivatives

Since the derivative of f, f’, is a function itself, we can consider the derivative of f’.

Definition 6.5.1
The second-order derivative of f is defined and denoted by

) _d (df(X))_

f1x) = (f'(x)) or 2 dx \ dx

Of course the domain of definition of f” must be adapted in consequence.

The second-order derivative is also itself a function and we can consider its derivative, i.e the
third-order derivative of f. This reasoning can be iterated as many time as we want and lead to the
definition of the k-th order derivative of f.
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Definition 6.5.2
The k-th order derivative of f is defined by taking k successively times the derivative of f and is
denoted by

MO = W) = (L (f@).) or d;f)ka)_i<...<z€<d];ix)>>...>.

Note the use of parenthesis in f ) to distinguish between a k-th order and a k-th power.

6.6 The differential of a function and some of its consequences

We saw previously that we can rewrite the definition of a derivative as

)t LD ) Sl A0 — £ ),

h—0 h Ax—0 Ax

If we consider |Ax| small, an approximation of f’(x) is given by

f/(x) ~ f(x+AZ))C_f(X)7

& flr+Ax) — f(x) = f(x)Ax.

The left-hand side represents the increment of f when we add Ax to the basepoint x. Then the
increment of f is a function of two variables: x and Ax. This quantity is called the differential of

bE
Definition 6.6.1
The differential of f at the basepoint x and with increment Ax is denoted and defined by

df(x,Ax) = f'(x)Ax.
Therefore, if |Ax| is small, we have
[t Ax) = f(x) = d f (x, Ax).

Then we can restate Theorem 6.4.1 with this change of notation (the proof follows the same
steps).

Theorem 6.6.1
Assume f is differentiable at x. Then

f(x+Ax) _f(x) - df(vax) +AxQx(Ax)

where lima,—,0 Ox(Ax) = 0.

Notation 6.2. Traditionally, Ax is denoted dx: df(x,dx) = f'(x)dx = %dx = %dx.

_____________________________________________________________________________________________________________________________________________|
= Example 6.4

Let f(x) = % Express the differential of f and give an approximation of f(2.1).
Solution: We have

df(x,dx) = f'(x)dx = ——dx.

33
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On the other hand, we can write 2.1 =2+ 0.1, thus let x = 2 and dx = 0.1 thus
2
f(2.1) = f(2) =~ df(2,0.1) = —% x 0.1.

Therefore: 1
f(2.1)= f(2)—0.025 = i 0.025 =0.25—-0.025 = 0.225.

By a calculator, we get f(2.1) ~ 0.22675737 then our approximation makes an absolute error of
~1.76.1073.

The previous theorem helps to prove the well known chain rule to find the derivative of a composite
function.

Theorem 6.6.2 — Chain rule
Assume that g is differentiable at x and f is differentiable at g(x). Then f o g is differentiable at
x and we have

(fog)'(x) = f'(s(x))g'(x).

Proof. By definition,

Let denote u = g(x) and Au = g(x + Ax) — g(x) thus g(x+ Ax) = u+ Au. We have (using Theo-
rem 6.6.1),

flg(x+Ax)) — f(g(x)) = flu+Au) — f(u) = df (u,Au) + AuQ, (Au)
= f'(u)Au+ AuQ, (Au),
where lima,—,0 Q,(Au) = 0. Therefore,

fe(x+Ax)) — f(g(x) _ f'(w)Au+AuQ,(Au)
Ax Ax

= )+ o

Ou(Au),

and we get

Jim R — (im0 ) (im, 35 + (tm, ) (tim 000).

Now, we address each term separately:
o lima, 0 f' (1) = lima,0 f/(g(x)) = f/(g(x)) (since f'(g(x)) does not depends on Ax),

g(x+AZi_g(x) :g’(x),

. u .
lim — = lim
Ax—0 Ax Ax—0

e since g is differentiable, it is continuous thus lima, o Au = lima,0(g(x + Ax) — g(x)) =
g(x) —g(x) =0, i.e when Ax — 0 we have Au — 0 as well. Therefore,

II‘Il0 Qu( u) ;mo Qu( u)
Using these results, we ﬁnally get

o {80+ A%) — £(g(x))
Ax—0 Ax

= f'(8(x))g'(x) +&'(x)(0) = f(g(x))g'(x).

Another consequence is the formula to get the derivative of an inverse function.



