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Theorem 6.6.3
Assume the function f is either increasing or decreasing and differentiable at y. Let y = f�1(x)
and f 0(y) 6= 0. Then f�1 is differentiable at x and we have

�
f�1�0 (x) = 1

f 0 ( f�1(x))
.

Proof. By definition,
�

f�1�0 (x) = lim
Dx!0

f�1(x+Dx)� f�1(x)
Dx

.

Let y+Dy = f�1(x+Dx), i.e x+Dx = f (y+Dy). Thus, Dx = f (y+Dy)� x = f (y+Dy)� f (y).
Therefore,

f�1(x+Dx)� f�1(x)
Dx

=
(y+Dy)� y

Dx
=

Dy
Dx

.

Notice that

lim
Dy!0

Dx
Dy

= lim
Dy!0

f (y+Dy)� f (y)
Dy

= f 0(y) 6= 0.

On the other hand, since f is differentiable, it is continuous thus limDy!0 Dx = limDy!0( f (y+Dy)�
f (y) = f (y)� f (y) = 0, i.e when Dy ! 0 we have Dx ! 0. Therefore,

�
f�1�0 (x) = lim

Dx!0

f�1(x+Dx)� f�1(x)
Dx

= lim
Dx!0

Dy
Dx

= lim
Dx!0

1
Dx
Dy

=
1

limDx!0
Dx
Dy

=
1

limDy!0
Dx
Dy

=
1

f 0(y)
=

1
f 0( f�1(x))

.

⌅

⌅ Example 6.5
Find d

dx arcsinx.
Solution: we have arcsinx = sin�1(x) thus

d
dx

arcsinx =
d
dx

sin�1(x) =
1

d
dy(siny)

����
y=arcsinx

=
1

cos(arcsinx)

Since cosx =
p

1� sin2 x, we get

d
dx

arcsinx =
1

cos(arcsinx)
=

1q
1� sin2(arcsinx)

=
1p

1� x2
.
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6.7 Mean Value Theorem
Theorem 6.7.1 — Fermat’s theorem
If f has a local maximum or minimum at x0 and f is differentiable at x0 then we have f 0(x0) = 0.

Proof. Let us prove it when f has a local maximum. The minimum case can be proven in a similar
way.
Since f is differentiable at x0, we have

f 0(x0) = lim
h!0

f (x0 +h)� f (x0)

h
= lim

h!0+

f (x0 +h)� f (x0)

h
= lim

h!0�

f (x0 +h)� f (x0)

h
.

Moreover, since f has a maximum at x0, we have f (x0 +h) f (x0), i.e f (x0 +h)� f (x0) 0, if
|h| is sufficiently small. Therefore,

• if h > 0, we have f (x0+h)� f (x0)
h  0 ) limh!0+

f (x0+h)� f (x0)
h  0.

• if h < 0, we have f (x0+h)� f (x0)
h � 0 ) limh!0�

f (x0+h)� f (x0)
h � 0.

Thus

lim
h!0

f (x0 +h)� f (x0)

h
= lim

h!0+

f (x0 +h)� f (x0)

h
 0,

and

lim
h!0

f (x0 +h)� f (x0)

h
= lim

h!0�

f (x0 +h)� f (x0)

h
� 0,

i.e ( f 0(x0) 0)^ ( f 0(x0)� 0), f 0(x0) = 0. ⌅

Theorem 6.7.2 — Rolle’s theorem
Let f a function continuous on [a,b] and differentiable in (a,b) such that f (a) = f (b). Then
9c 2 (a,b), f 0(c) = 0.

Proof. The case when f is constant on [a,b] is obvious since 8x 2 [a,b], f 0(x) = 0.
Assume now that f is not constant, continuous on [a,b], differentiable on (a,b) such that f (a) =
f (b). By the extreme value theorem, we know that f attains a minimum and maximum on [a,b].
These values cannot be equal to f (a) = f (b) at the same time otherwise it would mean that f is
constant which contradicts the assumption. Therefore, if the maximum of f (x) 6= f (a) (and f (b)),
9c 2 (a,b) such that f (c) is this maximum of f and from Fermat’s theorem we have f 0(c) = 0. The
same reasoning holds if we consider the minimum of f . Therefore 9c 2 (a,b), f 0(c) = 0. ⌅

Theorem 6.7.3 — Mean Value Theorem
Let f a function continuous on [a,b] and differentiable on (a,b). Then 9c 2 (a,b) such that

f (b)� f (a) = f 0(c)(b�a).

Note that the previous equality can be rewritten as

f 0(c) =
f (b)� f (a)

b�a
,

the left-hand side corresponds to the slope of the line passing through points (a, f (a)) and (b, f (b))
while f 0(c) is the slope of the tangent line to f at the point (c, f (c)). The Mean value theorem
means that there exists a tangent line to f which is parallel to the line passing through the endpoints
of f .
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Proof. Let denote g the secant line passing through (a, f (a)) and (b, f (b)). We know that the slope
of this line is f (b)� f (a)

b�a and the equation of g is given by

g(x) = f (a)+
f (b)� f (a)

b�a
(x�a).

Now, we set

h(x) = f (x)�g(x) = f (x)� f (a)� f (b)� f (a)
b�a

(x�a).

Clearly, h is continuous on [a,b] and differentiable on (a,b) and we have h(a)= h(b)= 0. Therefore,
by Rolle’s theorem 9c 2 (a,b),h0(c) = 0. But

h0(x) = f 0(x)� f (b)� f (a)
b�a

,

and the condition h0(c) = 0 is equivalent to

f 0(c)� f (b)� f (a)
b�a

= 0 , f 0(c) =
f (b)� f (a)

b�a
.

⌅

Theorem 6.7.4 — Generalized (Cauchy’s) Mean Value Theorem
Let two functions f and g continuous on [a,b] and differentiable on (a,b). Then 9c 2 (a,b) such
that

f 0(c)[g(b)�g(a)] = g0(c)[ f (b)� f (a)].

Proof. Set
h(x) = [ f (x)� f (a)][g(b)�g(a)]� [ f (b)� f (a)][g(x)�g(a)].

Clearly, h is continuous on [a,b] and differentiable on (a,b) and h(a) = h(b) = 0. Therefore,
Rolle’s theorem holds and we get 9c 2 (a,b),h0(c) = 0. But,

h0(x) = f 0(x)[g(b)�g(a)]� [ f (b)� f (a)]g0(x),

thus the condition h0(c) = 0 is equivalent to

f 0(c)[g(b)�g(a)]� [ f (b)� f (a)]g0(c) = 0 , f 0(c)[g(b)�g(a)] = [ f (b)� f (a)]g0(c).

⌅

The Mean Value Theorem and its generalized version have several important consequences we
will investigate now.

Theorem 6.7.5
Let a function f continuous on [a,b] and differentiable on (a,b).

• If 8x 2 (a,b), f 0(x)> 0 then f is increasing on [a,b],
• If 8x 2 (a,b), f 0(x)< 0 then f is decreasing on [a,b]

Proof. We have 8x1,x2 2 [a,b],x1 < x2. We have [x1,x2] ⇢ [a,b] and (x1,x2) ⇢ [a,b]. Thus, f is
continuous on [x1,x2] and differentiable on (x1,x2) and the Mean Value Theorem can be applied to
f on [x1,x2]:

9c 2 (x1,x2), f (x2)� f (x1) = f 0(c)(x2 � x1).

Therefore
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• if 8x 2 [a,b], f 0(x)> 0 then f 0(c)> 0 and we get that f (x2)� f (x1) = f 0(c)(x2 �x1)> 0 ,
f (x2)> f (x1), i.e f is increasing,

• if 8x 2 [a,b], f 0(x)< 0 then f 0(c)< 0 and we get that f (x2)� f (x1) = f 0(c)(x2 �x1)< 0 ,
f (x2)< f (x1), i.e f is decreasing.

⌅

Proposition 6.7.6
Let f a function continuous on [a,b] and differentiable on (a,b). Assume that 8x2 (a,b), f 0(x)=
0 then f is constant on [a,b].

Proof. We have 8x1,x2 2 (a,b), f is continuous on [x1,x2] and differentiable on (x1,x2) and the
Mean Value Theorem can be applied to f on [x1,x2]:

9c 2 (x1,x2), f (x2)� f (x1) = f 0(c)(x2 � x1).

Since 8x 2 [a,b], f 0(x) = 0, we have f 0(c) = 0 thus f (x2)� f (x1) = 0 , f (x1) = f (x2), i.e f is a
constant function. ⌅

Corollary 6.7.7
Assume that 8x 2 [a,b], f 0(x) = g0(x) then 9C (constant) such that 8x 2 [a,b], f (x) = g(x)+C.

Proof. Denote 8x 2 [a,b],h(x) = f (x)� g(x) then h0(x) = f 0(x)� g0(x) = 0. From Proposi-
tion 6.7.6, h is a constant function, i.e 9C,h(x) = C. Therefore, f (x)� g(x) = C , f (x) =
g(x)+C. ⌅

6.8 Convexity
Definition 6.8.1
A function f is convex over [a,b] if

8x,y 2 [a,b],x < y,8l 2 [0,1], f (lx+(1�l )y) l f (x)+(1�l ) f (y).

A function f is concave over [a,b] if

8x,y 2 [a,b],x < y,8l 2 [0,1], f (lx+(1�l )y)� l f (x)+(1�l ) f (y).

These definitions are illustrated in Figure 6.2.

x y�x+ (1� �)y

�f(x) + (1� �)f(y)

f(�x+ (1� �)y)

x y�x+ (1� �)y

�f(x) + (1� �)f(y)

f(�x+ (1� �)y)

Convex case Concave case

Figure 6.2: Example of convex and concave functions.
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Proposition 6.8.1
A function f is a convex function on [a,b] if and only if 8x,y 2 [a,b],x < y and 8z 2 [x,y], we
have

f (z)� f (x)
z� x

 f (y)� f (z)
y� z

.

Proof. ): Since 8x,y 2 [a,b] we choose z 2 [x,y], we can write z = lx+(1�l )y where l 2 [0,1].
If we solve for l , we find

l =
y� z
y� x

and 1�l =
z� x
y� x

.

Since f is convex, we have

f (z) = f (lx+(1�l )y) l f (x)+(1�l ) f (y).

Therefore, we have

f (z)� f (x) l f (x)+(1�l ) f (y)� f (x) = (1�l )( f (y)� f (x)) =
z� x
y� x

( f (y)� f (x))

, f (z)� f (x)
z� x

 f (y)� f (x)
y� x

.

On the other hand, we have
� f (z)��l f (x)� (1�l ) f (y)

, f (y)� f (z)� f (y)�l f (x)� (1�l ) f (y) = l ( f (y)� f (x)) =
y� z
y� x

( f (y)� f (x))

, f (y)� f (x)
y� x

 f (y)� f (z)
y� z

.

Therefore, combining the two obtained inequalities, we get the expected result:

f (z)� f (x)
z� x

 f (y)� f (z)
y� z

.

(: Now assume that 8x,y 2 [a,b] and 8z 2 [x,y] and we have

f (z)� f (x)
z� x

 f (y)� f (z)
y� z

.

As in the first part of the proof, we can write z = lx+(1�l )y,l 2 [0,1] and then

l =
y� z
y� x

and 1�l =
z� x
y� x

.

Thus, we get
f (z)� f (x)

(1�l )(y� x)
 f (y)� f (z)

l (y� x)
, l ( f (z)� f (x)) (1�l )( f (y)� f (z))

, f (z)(l +(1�l )) l f (x)+(1�l ) f (y)

, f (z) l f (x)+(1�l ) f (y)

, f (lx+(1�l )y) l f (x)+(1�l ) f (y),

i.e f is convex. ⌅


