Theorem 6.6.3

Assume the function f is either increasing or decreasing and differentiable at y. Let $y=f^{-1}(x)$ and $f^{\prime}(y) \neq 0$. Then f^{-1} is differentiable at x and we have

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Proof. By definition,

$$
\left(f^{-1}\right)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f^{-1}(x+\Delta x)-f^{-1}(x)}{\Delta x}
$$

Let $y+\Delta y=f^{-1}(x+\Delta x)$, i.e $x+\Delta x=f(y+\Delta y)$. Thus, $\Delta x=f(y+\Delta y)-x=f(y+\Delta y)-f(y)$. Therefore,

$$
\frac{f^{-1}(x+\Delta x)-f^{-1}(x)}{\Delta x}=\frac{(y+\Delta y)-y}{\Delta x}=\frac{\Delta y}{\Delta x} .
$$

Notice that

$$
\lim _{\Delta y \rightarrow 0} \frac{\Delta x}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{f(y+\Delta y)-f(y)}{\Delta y}=f^{\prime}(y) \neq 0
$$

On the other hand, since f is differentiable, it is continuous thus $\lim _{\Delta y \rightarrow 0} \Delta x=\lim _{\Delta y \rightarrow 0}(f(y+\Delta y)-$ $f(y)=f(y)-f(y)=0$, i.e when $\Delta y \rightarrow 0$ we have $\Delta x \rightarrow 0$. Therefore,

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f^{-1}(x+\Delta x)-f^{-1}(x)}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \\
& =\frac{1}{\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta y}} \\
& =\frac{1}{\lim _{\Delta y \rightarrow 0} \frac{\Delta x}{\Delta y}} \\
& =\frac{1}{f^{\prime}(y)}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

- Example 6.5

Find $\frac{d}{d x} \arcsin x$.
Solution: we have $\arcsin x=\sin ^{-1}(x)$ thus

$$
\frac{d}{d x} \arcsin x=\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\left.\frac{d}{d y}(\sin y)\right|_{y=\arcsin x}}=\frac{1}{\cos (\arcsin x)}
$$

Since $\cos x=\sqrt{1-\sin ^{2} x}$, we get

$$
\frac{d}{d x} \arcsin x=\frac{1}{\cos (\arcsin x)}=\frac{1}{\sqrt{1-\sin ^{2}(\arcsin x)}}=\frac{1}{\sqrt{1-x^{2}}}
$$

6.7 Mean Value Theorem

Theorem 6.7.1 - Fermat's theorem

If f has a local maximum or minimum at x_{0} and f is differentiable at x_{0} then we have $f^{\prime}\left(x_{0}\right)=0$.
Proof. Let us prove it when f has a local maximum. The minimum case can be proven in a similar way.
Since f is differentiable at x_{0}, we have

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0+} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0-} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

Moreover, since f has a maximum at x_{0}, we have $f\left(x_{0}+h\right) \leq f\left(x_{0}\right)$, i.e $f\left(x_{0}+h\right)-f\left(x_{0}\right) \leq 0$, if $|h|$ is sufficiently small. Therefore,

- if $h>0$, we have $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \leq 0 \Rightarrow \lim _{h \rightarrow 0+} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \leq 0$.
- if $h<0$, we have $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \geq 0 \Rightarrow \lim _{h \rightarrow 0-} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \geq 0$.

Thus

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0+} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \leq 0,
$$

and

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0-} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \geq 0,
$$

i.e $\left(f^{\prime}\left(x_{0}\right) \leq 0\right) \wedge\left(f^{\prime}\left(x_{0}\right) \geq 0\right) \Leftrightarrow f^{\prime}\left(x_{0}\right)=0$.

Theorem 6.7.2 - Rolle's theorem

Let f a function continuous on $[a, b]$ and differentiable in (a, b) such that $f(a)=f(b)$. Then $\exists c \in(a, b), f^{\prime}(c)=0$.

Proof. The case when f is constant on $[a, b]$ is obvious since $\forall x \in[a, b], f^{\prime}(x)=0$.
Assume now that f is not constant, continuous on $[a, b]$, differentiable on (a, b) such that $f(a)=$ $f(b)$. By the extreme value theorem, we know that f attains a minimum and maximum on $[a, b]$. These values cannot be equal to $f(a)=f(b)$ at the same time otherwise it would mean that f is constant which contradicts the assumption. Therefore, if the maximum of $f(x) \neq f(a)$ (and $f(b)$), $\exists c \in(a, b)$ such that $f(c)$ is this maximum of f and from Fermat's theorem we have $f^{\prime}(c)=0$. The same reasoning holds if we consider the minimum of f. Therefore $\exists c \in(a, b), f^{\prime}(c)=0$.

Theorem 6.7.3 - Mean Value Theorem

Let f a function continuous on $[a, b]$ and differentiable on (a, b). Then $\exists c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Note that the previous equality can be rewritten as

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a},
$$

the left-hand side corresponds to the slope of the line passing through points $(a, f(a))$ and $(b, f(b))$ while $f^{\prime}(c)$ is the slope of the tangent line to f at the point $(c, f(c)$). The Mean value theorem means that there exists a tangent line to f which is parallel to the line passing through the endpoints of f.

Proof. Let denote g the secant line passing through $(a, f(a))$ and $(b, f(b))$. We know that the slope of this line is $\frac{f(b)-f(a)}{b-a}$ and the equation of g is given by

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Now, we set

$$
h(x)=f(x)-g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Clearly, h is continuous on $[a, b]$ and differentiable on (a, b) and we have $h(a)=h(b)=0$. Therefore, by Rolle's theorem $\exists c \in(a, b), h^{\prime}(c)=0$. But

$$
h^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a},
$$

and the condition $h^{\prime}(c)=0$ is equivalent to

$$
f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0 \Leftrightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Theorem 6.7.4 - Generalized (Cauchy's) Mean Value Theorem

Let two functions f and g continuous on $[a, b]$ and differentiable on (a, b). Then $\exists c \in(a, b)$ such that

$$
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)] .
$$

Proof. Set

$$
h(x)=[f(x)-f(a)][g(b)-g(a)]-[f(b)-f(a)][g(x)-g(a)] .
$$

Clearly, h is continuous on $[a, b]$ and differentiable on (a, b) and $h(a)=h(b)=0$. Therefore, Rolle's theorem holds and we get $\exists c \in(a, b), h^{\prime}(c)=0$. But,

$$
h^{\prime}(x)=f^{\prime}(x)[g(b)-g(a)]-[f(b)-f(a)] g^{\prime}(x),
$$

thus the condition $h^{\prime}(c)=0$ is equivalent to

$$
f^{\prime}(c)[g(b)-g(a)]-[f(b)-f(a)] g^{\prime}(c)=0 \Leftrightarrow f^{\prime}(c)[g(b)-g(a)]=[f(b)-f(a)] g^{\prime}(c) .
$$

The Mean Value Theorem and its generalized version have several important consequences we will investigate now.

Theorem 6.7.5

Let a function f continuous on $[a, b]$ and differentiable on (a, b).

- If $\forall x \in(a, b), f^{\prime}(x)>0$ then f is increasing on $[a, b]$,
- If $\forall x \in(a, b), f^{\prime}(x)<0$ then f is decreasing on $[a, b]$

Proof. We have $\forall x_{1}, x_{2} \in[a, b], x_{1}<x_{2}$. We have $\left[x_{1}, x_{2}\right] \subset[a, b]$ and $\left(x_{1}, x_{2}\right) \subset[a, b]$. Thus, f is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on (x_{1}, x_{2}) and the Mean Value Theorem can be applied to f on $\left[x_{1}, x_{2}\right]$:

$$
\exists c \in\left(x_{1}, x_{2}\right), f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right) .
$$

Therefore

- if $\forall x \in[a, b], f^{\prime}(x)>0$ then $f^{\prime}(c)>0$ and we get that $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)>0 \Leftrightarrow$ $f\left(x_{2}\right)>f\left(x_{1}\right)$, i.e f is increasing,
- if $\forall x \in[a, b], f^{\prime}(x)<0$ then $f^{\prime}(c)<0$ and we get that $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)<0 \Leftrightarrow$ $f\left(x_{2}\right)<f\left(x_{1}\right)$, i.e f is decreasing.

Proposition 6.7.6

Let f a function continuous on $[a, b]$ and differentiable on (a, b). Assume that $\forall x \in(a, b), f^{\prime}(x)=$ 0 then f is constant on $[a, b]$.

Proof. We have $\forall x_{1}, x_{2} \in(a, b), f$ is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on $\left(x_{1}, x_{2}\right)$ and the Mean Value Theorem can be applied to f on $\left[x_{1}, x_{2}\right]$:

$$
\exists c \in\left(x_{1}, x_{2}\right), f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)
$$

Since $\forall x \in[a, b], f^{\prime}(x)=0$, we have $f^{\prime}(c)=0$ thus $f\left(x_{2}\right)-f\left(x_{1}\right)=0 \Leftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$, i.e f is a constant function.

Corollary 6.7.7

Assume that $\forall x \in[a, b], f^{\prime}(x)=g^{\prime}(x)$ then $\exists C$ (constant) such that $\forall x \in[a, b], f(x)=g(x)+C$.
Proof. Denote $\forall x \in[a, b], h(x)=f(x)-g(x)$ then $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$. From Proposition 6.7.6, h is a constant function, i.e $\exists C, h(x)=C$. Therefore, $f(x)-g(x)=C \Leftrightarrow f(x)=$ $g(x)+C$.

6.8 Convexity

Definition 6.8.1

A function f is convex over $[a, b]$ if

$$
\forall x, y \in[a, b], x<y, \forall \lambda \in[0,1], f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

A function f is concave over $[a, b]$ if

$$
\forall x, y \in[a, b], x<y, \forall \lambda \in[0,1], f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)
$$

These definitions are illustrated in Figure 6.2.

Figure 6.2: Example of convex and concave functions.

Proposition 6.8.1

A function f is a convex function on $[a, b]$ if and only if $\forall x, y \in[a, b], x<y$ and $\forall z \in[x, y]$, we have

$$
\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(z)}{y-z}
$$

Proof. \Rightarrow : Since $\forall x, y \in[a, b]$ we choose $z \in[x, y]$, we can write $z=\lambda x+(1-\lambda) y$ where $\lambda \in[0,1]$. If we solve for λ, we find

$$
\lambda=\frac{y-z}{y-x} \quad \text { and } \quad 1-\lambda=\frac{z-x}{y-x} .
$$

Since f is convex, we have

$$
f(z)=f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) .
$$

Therefore, we have

$$
\begin{gathered}
f(z)-f(x) \leq \lambda f(x)+(1-\lambda) f(y)-f(x)=(1-\lambda)(f(y)-f(x))=\frac{z-x}{y-x}(f(y)-f(x)) \\
\Leftrightarrow \frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(x)}{y-x}
\end{gathered}
$$

On the other hand, we have

$$
\begin{gathered}
-f(z) \geq-\lambda f(x)-(1-\lambda) f(y) \\
\Leftrightarrow f(y)-f(z) \geq f(y)-\lambda f(x)-(1-\lambda) f(y)=\lambda(f(y)-f(x))=\frac{y-z}{y-x}(f(y)-f(x)) \\
\Leftrightarrow \frac{f(y)-f(x)}{y-x} \leq \frac{f(y)-f(z)}{y-z} .
\end{gathered}
$$

Therefore, combining the two obtained inequalities, we get the expected result:

$$
\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(z)}{y-z}
$$

\Leftarrow : Now assume that $\forall x, y \in[a, b]$ and $\forall z \in[x, y]$ and we have

$$
\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(z)}{y-z}
$$

As in the first part of the proof, we can write $z=\lambda x+(1-\lambda) y, \lambda \in[0,1]$ and then

$$
\lambda=\frac{y-z}{y-x} \quad \text { and } \quad 1-\lambda=\frac{z-x}{y-x} .
$$

Thus, we get

$$
\begin{gathered}
\frac{f(z)-f(x)}{(1-\lambda)(y-x)} \leq \frac{f(y)-f(z)}{\lambda(y-x)} \\
\Leftrightarrow \lambda(f(z)-f(x)) \leq(1-\lambda)(f(y)-f(z)) \\
\Leftrightarrow f(z)(\lambda+(1-\lambda)) \leq \lambda f(x)+(1-\lambda) f(y) \\
\Leftrightarrow f(z) \leq \lambda f(x)+(1-\lambda) f(y) \\
\Leftrightarrow f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y),
\end{gathered}
$$

i.e f is convex.

