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Theorem 6.6.3
Assume the function f is either increasing or decreasing and differentiable at y. Let y = f~!(x)

and f’(y) # 0. Then f~! is differentiable at x and we have

RNV 1
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Proof. By definition,
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Let y+Ay = f~!(x + Ax), i.e x + Ax = f(y+Ay). Thus, Ax = f(y+Ay) —x = f(y+Ay) — f(¥).

Therefore,
o) —f 1) Ay —y Ay

Ax Ax Ax’

Notice that
A f+AY) - f)
lim —=1 = .
Aylglo Ay Aylgo Ay FO#0

On the other hand, since f is differentiable, it is continuous thus limay_,0 Ax = lima,—,o(f(y+Ay) —
f(y)=f(y)— f(y) =0, i.e when Ay — 0 we have Ax — 0. Therefore,
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= Example 6.5
Find % arcsinx.
Solution: we have arcsinx = sin~!(x) thus

d . d . 1 1
dx O = g s () = d a cos(arcsinx)
4 (siny)
y=arcsinx
Since cosx = /1 —sin’x, we get
1 1 1

— arcsinx = : = = .
dx cos(arcsinx) \/1 _ sin?(arcsinx) V1—x2
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Mean Value Theorem

Theorem 6.7.1 — Fermat’s theorem
If f has a local maximum or minimum at xy and f is differentiable at x( then we have f/(xy) = 0.

Proof. Let us prove it when f has a local maximum. The minimum case can be proven in a similar
way.
Since f is differentiable at x(, we have

ooy Joth) = flxo) . flxot+h)—flxo) .. flxo+h)— f(xo)
F(xo) = fim I =, h = h '

Moreover, since f has a maximum at xy, we have f(xo+h) < f(xo), i.e f(xo+h)— f(x0) <0, if
|h| is sufficiently small. Therefore,
o if i >0, we have [XH)I00) < fim,, ,,, frothl /o) <

h —

o if h < 0, we have LEHN=SG0) > g — jjpy, o SoFh=f0) > ¢

Thus ! " N
limf(xo+h)—f(xo) ~ lim f(xo+h)— f(xo) <0,
h—0 h h—0+ h
and
hmf(xo+h)—f(xo) ~ lim f(xo+h)— f(xo) >0,
h—0 h h—0— h
i.e (f(x0) <0)A(f'(x0) = 0) & f'(x0) = 0. n

Theorem 6.7.2 — Rolle’s theorem
Let f a function continuous on [a,b] and differentiable in (a,b) such that f(a) = f(b). Then
de € (a,b), f'(c) =0.

Proof. The case when f is constant on [a, b] is obvious since Vx € [a,b], f'(x) = 0.

Assume now that f is not constant, continuous on [a, b], differentiable on (a,b) such that f(a) =
f(b). By the extreme value theorem, we know that f attains a minimum and maximum on [a, b].
These values cannot be equal to f(a) = f(b) at the same time otherwise it would mean that f is
constant which contradicts the assumption. Therefore, if the maximum of f(x) # f(a) (and f(b)),
Je € (a,b) such that f(c) is this maximum of f and from Fermat’s theorem we have f’(c¢) = 0. The
same reasoning holds if we consider the minimum of f. Therefore 3¢ € (a,b), f'(c) = 0. [ |

Theorem 6.7.3 — Mean Value Theorem
Let f a function continuous on [a,b] and differentiable on (a,b). Then Jc € (a,b) such that

f(b)—f(a) = f(c)(b—a).

Note that the previous equality can be rewritten as
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the left-hand side corresponds to the slope of the line passing through points (a, f(a)) and (b, f(D))
while f’(c) is the slope of the tangent line to f at the point (¢, f(c)). The Mean value theorem
means that there exists a tangent line to f which is parallel to the line passing through the endpoints

of f.
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Proof. Let denote g the secant line passing through (a, f(a)) and (b, f(b)). We know that the slope
of this line is £2=/19) and the equation of g is given by

b—a

Now, we set

h(x) = f(x) — g(x) = f(x) — f(a) — JW

Clearly, & is continuous on [a, b] and differentiable on (a,b) and we have h(a) = h(b) = 0. Therefore,
by Rolle’s theorem 3¢ € (a,b),h'(c) = 0. But

(x—a).

/ b) —
W) = iy - 101,
and the condition /#'(c¢) = 0 is equivalent to
/ f(b)_f(a)_ / _f(b)_f(a)
f(c)_ b_a _0<:>f(c)_ b_a .

Theorem 6.7.4 — Generalized (Cauchy’s) Mean Value Theorem
Let two functions f and g continuous on [a, b] and differentiable on (a,b). Then Jc € (a,b) such
that

Proof. Set
h(x) = [f(x) = f(a)][g(b) — g(a)] = [f (D) — f(a)][g(x) — g(a)].

Clearly, & is continuous on [a,b] and differentiable on (a,b) and h(a) = h(b) = 0. Therefore,
Rolle’s theorem holds and we get 3¢ € (a,b),h’'(c) = 0. But,

W (x) = f'(x)[g(b) — g(a)] — [f(b) — f(a)]g (x),
thus the condition 4’(c¢) = 0 is equivalent to
f'(0)[g(b) —gla)] = [f(b) — f(a)]g'(c) = 0« f'(c)[g(b) — g(a)] = [f(b) — f(a)]&'(c).
|

The Mean Value Theorem and its generalized version have several important consequences we
will investigate now.

Theorem 6.7.5

Let a function f continuous on [a,b] and differentiable on (a,b).
e IfVx € (a,b), f'(x) > 0 then f is increasing on [a, b],
e IfVx € (a,b), f'(x) < 0 then f is decreasing on [a, b]

Proof. We have Vx|,x; € [a,b],x; < x2. We have [x1,x2] C [a,b] and (x1,x2) C [a,b]. Thus, f is
continuous on [x1,x;] and differentiable on (x,x;) and the Mean Value Theorem can be applied to
fon [x1,x2]:

Je € (x1,32), f(x2) = f(x1) = f'(c) (2 —x1).

Therefore
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e if Vx € [a,b], f'(x) > O then f’(c) > 0 and we get that f(x) — f(x1) = f(c)(x2—x1) >0 &
f(x2) > f(x1), i.e f is increasing,

e if Vx € [a,b], f'(x) < Othen f'(c) < 0and we get that f(x2) — f(x1) = f(c)(x2—x1) <0 &
f(x2) < f(x1), i.e f is decreasing.

|

Proposition 6.7.6

Let f a function continuous on [a, b] and differentiable on (a,b). Assume that Vx € (a,b), f'(x) =
0 then f is constant on [a, b].

Proof. We have Vx;,x; € (a,b), f is continuous on [x;,x>] and differentiable on (x;,x,) and the
Mean Value Theorem can be applied to f on [x;,x;]:

Je € (x1,%2), f(x2) — f(x1) = f(€) (22 —x1).

Since Vx € [a,b], f'(x) = 0, we have f'(c) =0 thus f(x2) — f(x1) =0< f(x1) = f(x2),i.e fisa
constant function. [ |

Corollary 6.7.7
Assume that Vx € [a,b], f'(x) = g'(x) then 3C (constant) such that Vx € [a,b], f(x) = g(x) +C.

Proof. Denote Vx € [a,b],h(x) = f(x) — g(x) then A’ (x) = f'(x) — g’(x) = 0. From Proposi-
tion 6.7.6, h is a constant function, i.e 3C,h(x) = C. Therefore, f(x) —g(x) = C < f(x) =
g(x)+C. [ |

6.8 Convexity
Definition 6.8.1
A function f is convex over [a,b] if

Vx,y € [a7b]7-x<y7vx € [071}7}0(7")‘:—’_(1 _A')y) < )’f('x)—i_(l _A')f(y)
A function f is concave over [a,b] if

Vx,y € [a,b],x <y, YA € [0,1], f(Ax+ (1= A)y) > Af(x)+ (1 = 1) f(y).

These definitions are illustrated in Figure 6.2.
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Figure 6.2: Example of convex and concave functions.



82 Chapter 6. Derivatives

Proposition 6.8.1
A function f is a convex function on [a, b] if and only if Vx,y € [a,b],x < y and Vz € [x,y], we

have
f@) = f(x) < fO) 1)

Z—X y—2z2

Proof. = Since Vx,y € [a,b] we choose z € [x,y], we can write z= Ax+ (1 —A)y where 4 € [0, 1].
If we solve for A, we find

<

l:;z and l—lzz_x.
y—Xx y—x

Since f is convex, we have

f@) =fAx+(1-2)y) SAf(x)+(1-A)f().

Therefore, we have

@) =) SAf)+ (A=) f () =) =1 =2)(Fy) = f(x) = i:i(f(y) —f(x))
()= f() _ f)—f().
Z—X B y—Xx

On the other hand, we have

—f(@) 2 —Af(x) = (1=2)f(y)

& ) = 2) 2 F0) = AS () = (1= A)F0) = AU ) — () = T = (F6) = ()
o FO) W) FO) - f2)
y—x y—2z
Therefore, combining the two obtained inequalities, we get the expected result:
@) —fx) _ ) =)
z—x = y—-z

<: Now assume that Vx,y € [a,b] and Vz € [x,y] and we have

f@)—fx) _f0)—fz)

Z—X B y—z

As in the first part of the proof, we can write z = Ax+ (1 —24)y,A € [0,1] and then

A=2"% and joa=2""
y—Xx y—x
Thus, we get
f@ =) _ fO)— ()

)—

(I-A)y—x) = Aly—x)

S A(fD) = f(x) < (1=2)(f(y)

S fRDA+(1-2) <Af(x)+(1- l)f(y)
& f(2) SAL)+(1=2)f(y)

& f(Ax+(1=2)y) SAf(x)+(1=2A)f (),

i.e f is convex. |
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