
3.3 Properties of limits 21

⌅ Example 3.6
Show that the sequence

�
sin

� np
2
� •

n=1 does NOT have a limit.
Solution: From the contraposition of the previous proposition, if we can exhibit two subsequences
which have different limits then necessarily the original sequence does not have a limit.
Let’s look at the first term of the sequence:

sin
⇣p

2

⌘
; sin(p) ; sin

✓
3p
2

◆
; sin(2p) ; sin

✓
5p
2

◆
; sin(3p) ; sin

✓
7p
2

◆
; . . .

, 1;0;�1;0;1;0;�1;0; . . .

Notice that sin
�
(n+4)p

2
�
= sin

� np
2 +2p

�
= sin

� np
2
�

thus the pattern 1,0,�1,0 is repeated.
Therefore, the sequences

1,1,1,1, . . .

0,0,0,0, . . .

�1,�1,�1,�1, . . .

are subsequences of {an} and have the limits 1,0,�1, respectively. We finally conclude that the
initial sequence does not have a limit.

3.3 Properties of limits

Proposition 3.3.1
The limit of a constant sequence c is c.

Proof. Assume that 8n 2 N,an = c. We need to show that limn!• an = c.
We have that 8e > 0,8n 2 N

|an � c|= |c� c|= 0 < e.

Therefore limn!• an = c. ⌅

Proposition 3.3.2 — Constant sequence.
Assume that c is a constant and limn!• an exists then

lim
n!•

(can) = c lim
n!•

an.

Proof. If c = 0 then 8n 2 N,can = 0 so that limn!•(can) = limn!•(0) = 0 (from proposition
3.3.1).
If c 6= 0, denote L = limn!• an, then we have

8e > 0,9N 2 N,8n � N, |an �L|< e
|c| ,

,8e > 0,9N 2 N,8n � N, |c||an �L|< e,

,8e > 0,9N 2 N,8n � N, |can � cL|< e.

Therefore
lim
n!•

(can) = cL = c lim
n!•

an.

⌅
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Proposition 3.3.3 — Sum rule.
Let {an} and {bn} be two converging sequences then limn!•(an +bn) exists and

lim
n!•

(an +bn) = lim
n!•

an + lim
n!•

bn.

Proof. Since both L1 = limn!• an and L2 = limn!• bn exist, we have 8e > 0

9N1 2 N,8n � N1, |an �L1|<
e
2
,

9N2 2 N,8n � N2, |bn �L2|<
e
2
.

Set N = max(N1,N2) then 8n � N, we have (by the triangle inequality)

|(an +bn)� (L1 +L2)|= |(an �L1)+(bn �L2)| |an �L1|+ |bn �L2|<
e
2
+

e
2
= e.

Therefore
lim
n!•

(an +bn) = lim
n!•

an + lim
n!•

bn.

⌅

Definition 3.3.1
A sequence {an} is said to be bounded if 9M 2 R,M � 0,8n 2 N, |an| M.

Proposition 3.3.4
A convergent sequence is bounded.

Proof. We need to show that 9M � 0,8n 2 N, |an| M.
Denote L = limn!• an then

9N 2 N,8n � N, |an �L|< 1.

Therefore, if n � N then

|an|= |an �L+L| |an �L|+ |L|< 1+ |L|.

Now, set M = max(|a1|, |a2|, . . . , |aN�1|,1+ |L|), we have 9M � 0,8n 2 N, |an| M. ⌅

Proposition 3.3.5 — Product rule.
Let {an} and {bn} be two converging sequences then

lim
n!•

(anbn) =
⇣

lim
n!•

an

⌘⇣
lim
n!•

bn

⌘
.

Proof. Denote L1 = limn!• an and L2 = limn!• bn, we need to show that limn!•(anbn) = L1L2.
We have

|anbn �L1L2|= |anbn �L1bn +L1bn �L1L2|
= |(an �L1)bn +L1(bn �L2)|
 |an �L1||bn|+ |L1||bn �L2|.

Since a convergent sequence is bounded, 9M � 0 such that 8n 2 N, |bn| M. Therefore,

|anbn �L1L2| M|an �L1|+ |L1||bn �L2|.
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Since limn!• an = L1 and limn!• bn = L2, we have 8e > 0,9N 2 N,8n � N,

|an �L1|<
e

M+ |L1|
and |bn �L2|<

e
M+ |L1|

.

Thus 8e > 0,9N 2 N,8n � N,

|anbn �L1L2|< M
e

M+ |L1|
+ |L1|

e
M+ |L1|

< e
✓

M
M+ |L1|

+
|L1|

M+ |L1|

◆
= e.

Therefore
lim
n!•

(anbn) = L1L2 =
⇣

lim
n!•

an

⌘⇣
lim
n!•

bn

⌘
.

⌅

Proposition 3.3.6 — Quotient rule.
Let {an} and {bn} be two converging sequences. Assume that limn!• bn 6= 0 then

lim
n!•

an

bn
=

limn!• an

limn!• bn
.

Proof. We only need to prove that limn!•
1
bn

= 1
limn!• bn

because by product rule we have

lim
n!•

an

bn
=
⇣

lim
n!•

an

⌘✓ 1
limn!• bn

◆
.

Denote L = limn!• bn, let us prove that limn!•
1
bn

= 1
L . We have

����
1
bn

� 1
L

����=
����
L�bn

bnL

����=
|bn �L|
|bn||L|

.

Since limn!• bn = L,

8e > 0,9N1 2 N,8n � N1, |bn �L|< e L2

2
,

and 9N2 2 N,8n � N2,

|bn �L|< L
2
,�L

2
< bn �L <

L
2

, L
2
< bn <

3L
2

, 2
3L

<
1
bn

<
2
L
.

Setting N = max(N1,N2), we have 8n � N, |bn �L|< e L2

2 and 1
|bn| <

2
|L| . Therefore,

8e > 0,9N 2 N,8n � N,

����
1
bn

� 1
L

����=
|bn �L|
|bn||L|

<
2
|L|

1
|L|e

L2

2
= e.

Thus
lim
n!•

1
bn

=
1

limn!• bn
.

⌅
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Proposition 3.3.7
Let {an} and {bn} be two converging sequences. If 8n 2 N,an < bn then

lim
n!•

an  lim
n!•

bn.

Proof. Denote L1 = limn!• an and L2 = limn!• bn, we need to show that L1  L2.
To do so, we will prove that 8e > 0,L1 < L2 + e .
We have,

8e > 0,9N 2 N,8n � N, |an �L1|<
e
2

and |bn �L2|<
L2

2
.

Therefore,

L1 �L2 = (L1 �an)+(an �bn)+(bn �L2)

 |L1 �an|� (bn �an)+ |bn �L2|
<

sincebn>an
|L1 �an|+ |bn �L2|.

Thus
L1 �L2 <

e
2
+

e
2
= e , L1 < L2 + e.

⌅

Corollary 3.3.8
Assume that 8n 2 N,an < M and limn!• an exists then

lim
n!•

an  M.

Proof. We use the previous proposition with bn =M (constant sequence) and the fact that limn!• M =
M. ⌅

R We cannot claim the strict inequality limn!• an < M if 8n 2 N,an < M. Indeed, consider
an = 1� 1

n , we have 8n 2 N,an < 1 but limn!•
�
1� 1

n
�
= 1!

3.4 Cauchy sequences
Definition 3.4.1
A sequence {an}•

n=1 is a Cauchy sequence if

8e > 0,9N 2 N,8n,m 2 N,n � N,m � N, |an �am|< e.

If we set m = n+ k for k 2 N, we get the equivalent definition

8e > 0,9N 2 N,8n 2,n � N,8k 2 N, |an+k �an|< e.

Geometric interpretation: for any arbitrary n and m large enough (� N), we have am � e < an <
am + e . This means that an and am are trapped within a small tube of radius e , see Figure. 3.3.

Proposition 3.4.1
A convergent sequence is a Cauchy sequence.
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an

n

an + ✏

an � ✏

N n m

an am

Figure 3.3: Geometric interpretation of a Cauchy sequence.

Proof. Let {an} be a convergent sequence and denote L its limit. Then

8e > 0,9N 2 N,8n 2 N,n � N, |an �L|< e
2
.

Choose n and m such that n � N and m � N. We have (by the triangle inequality)

|an �am|= |(an �L)+(L�am)| |an �L|+ |am �L|< e
2
+

e
2
= e.

We conclude that

8e > 0,9N 2 N,8n,m 2 N,n � N,m � N, |an �am|< e,

i.e {an} is a Cauchy sequence. ⌅

Definition 3.4.2
A finite decimal is an expression of the form

a0.a1a2a3 . . .an

where a0 2Z and 8n 2N,an 2 {0,1,2,3,4,5,6,7,8,9} (an are called digits). The corresponding
rational number is

a0 +
a1

10
+

a2

102 +
a3

103 + . . .+
an

10n .

An infinite decimal of the form
a0.a1a2a3 . . .an . . .

corresponds to
lim
n!•

⇣
a0 +

a1

10
+

a2

102 +
a3

103 + . . .+
an

10n

⌘
.

If a block of digits is repeated infinitely, then the limit is a rational number.

⌅ Example 3.7

1
2
= 0.499999 . . .

1
3
= 0.333333 . . .
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Let us check that 1/2 = 0.499999 . . . (the second one is left as an exercise). We will use the
identity

1+ x+ x2 + x3 + . . .+ xn =
1� xn+1

1� x
if x 6= 1.

We have

4
10

+
9

102 +
9

103 + . . .+
9

10n =
4
10

+
9

102

✓
1+

1
10

+
1

102 + . . .+
1

10n�2

◆

=
4
10

+
9

102

1� 1
10n�1

1� 1
10

=
4
10

+
9

102

1� 1
10n�1

10�1
10

=
4
10

+
1

10

✓
1� 1

10n�1

◆
.

Therefore,

0.49999 . . .= lim
n!•

✓
4
10

+
9

102 +
9

103 + . . .+
9

10n

◆

= lim
n!•

✓
4
10

+
1

10

✓
1� 1

10n�1

◆◆

=
4
10

+
1
10

lim
n!•

✓
1� 1

10n�1

◆

=
4
10

+
1
10

=
5

10
=

1
2
.

Proposition 3.4.2
Given an infinite decimal

a0.a1a2a3 . . .an . . . ,

the sequence {Sn}•
n=1 where

Sn = a0 +
a1

10
+

a2

102 + . . .
an

10n

is a Cauchy sequence.

Proof. 8k 2 N, we have

|Sn+k �Sn|=
���
⇣

a0 +
a1

10
+

a2

102 + . . .+
an

10n +
an+1

10n+1 + . . .+
an+k

10n+k

⌘

�
⇣

a0 +
a1

10
+

a2

102 + . . .+
an

10n

⌘���

=
���

an+1

10n+1 +
an+2

10n+2 + . . .+
an+k

10n+k

���

=
an+1

10n+1 +
an+2

10n+2 + . . .+
an+k

10n+k (each term in the sum is positive)
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But by definition, 8n 2 N,an  9 thus

|Sn+k �Sn|=
an+1

10n+1 +
an+2

10n+2 + . . .+
an+k

10n+k  9
10n+1 +

9
10n+2 + . . .+

9
10n+k

=
9

10n+1

✓
1+

1
10

+
1

102 + . . .+
1

10k�1

◆

=
9

10n+1

1� 1
10k

1� 1
10

=
9

10n+1

1� 1
10k

10�1
10

=
1

10n

✓
1� 1

10k

◆

<
1

10n .

Thus, 8e > 0, we can choose N 2 N such that

1
10N < e , 1

e
< 10N , N > log10

✓
1
e

◆
.

Therefore,

8e > 0,9N 2 N,N > log10

✓
1
e

◆
,8n 2 N,n � N,8k 2 N, |Sn+k �Sn|< e,

which is the second form of the Cauchy sequence definition and we conclude that {Sn} is a Cauchy
sequence. ⌅

We know that a convergent sequence is a Cauchy sequence. It is then legitimate to ask if
a Cauchy sequence is necessarily a convergent sequence. The answer is given by the Cauchy

convergence principle:

Axiom 1
A Cauchy sequence of real numbers converges to a real number.

R Note that it concerns real numbers. For instance, this axiom does not hold for sequences of
rational numbers!

R This axiom implies that any infinite decimal a0.a1a2a3 . . .an . . . represents a real number
because it is the limit of a Cauchy sequence.

R Assume we have shown that {xn}•
n=1 is a Cauchy sequence by determining an integer Ne

such that
8e > 0,9Ne ,8m,n 2 N,n � Ne ,m � Ne , |xm � xn|< e.

In particular we have (because n � Ne)):

8e > 0,9Ne ,8m 2 N,m � Ne , |xm � xNe |< e.

If we denote x = limm!• xm then

|x� xNe |= lim
m!•

|xm � xNe |< e.


