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But by definition, 8n 2 N,an  9 thus

|Sn+k �Sn|=
an+1

10n+1 +
an+2

10n+2 + . . .+
an+k

10n+k  9
10n+1 +

9
10n+2 + . . .+

9
10n+k

=
9

10n+1

✓
1+

1
10

+
1

102 + . . .+
1

10k�1

◆

=
9

10n+1

1� 1
10k

1� 1
10

=
9

10n+1

1� 1
10k

10�1
10

=
1

10n

✓
1� 1

10k

◆

<
1

10n .

Thus, 8e > 0, we can choose N 2 N such that

1
10N < e , 1

e
< 10N , N > log10

✓
1
e

◆
.

Therefore,

8e > 0,9N 2 N,N > log10

✓
1
e

◆
,8n 2 N,n � N,8k 2 N, |Sn+k �Sn|< e,

which is the second form of the Cauchy sequence definition and we conclude that {Sn} is a Cauchy
sequence. ⌅

We know that a convergent sequence is a Cauchy sequence. It is then legitimate to ask if
a Cauchy sequence is necessarily a convergent sequence. The answer is given by the Cauchy

convergence principle:

Axiom 1
A Cauchy sequence of real numbers converges to a real number.

R Note that it concerns real numbers. For instance, this axiom does not hold for sequences of
rational numbers!

R This axiom implies that any infinite decimal a0.a1a2a3 . . .an . . . represents a real number
because it is the limit of a Cauchy sequence.

R Assume we have shown that {xn}•
n=1 is a Cauchy sequence by determining an integer Ne

such that
8e > 0,9Ne ,8m,n 2 N,n � Ne ,m � Ne , |xm � xn|< e.

In particular we have (because n � Ne)):

8e > 0,9Ne ,8m 2 N,m � Ne , |xm � xNe |< e.

If we denote x = limm!• xm then

|x� xNe |= lim
m!•

|xm � xNe |< e.
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Therefore
xNe � e < x < xNe + e.

It means that we can approximate the number x with any arbitrary precision (even if we don’t
know the exact value of x, only xNe is needed).

Proposition 3.4.3
Any real number x can be represented by a decimal.

Proof. Assume that x > 0 (the case x < 0 can be proven in a similar way), see Figure 3.4 for an
illustration of this proof. By the Archimedean property, 9m 2 N,m > x. By the well-ordering
property of natural numbers, there exists a smallest m, we denote it a0 +1. We then have a0  x <
a0 +1.
We divide the interval [a0,a0 +1) into ten subintervals of the same length:

[a0,a0 +1) =
9[

j=0


a0 +

j
10

,a0 +
j+1
10

◆
.

Note that all subintervals are disjoint then x belongs to only one of these subintervals. This is
equivalent to

9a1 2 {0,1,2,3,4,5,6,7,8,9},x 2


a0 +
a1

10
,a0 +

a1 +1
10

◆
.

We can repeat the same process of dividing this subinterval into ten new subintervals:


a0 +
a1

10
,a0 +

a1 +1
10

◆
=

9[

j=0


a0 +

a1

10
+

j
102 ,a0 +

a1

10
+

j+1
102

◆
.

Hence,

9a2 2 {0,1,2,3,4,5,6,7,8,9},x 2


a0 +
a1

10
+

a2

102 ,a0 +
a1

10
+

a2 +1
102

◆
.

We can repeat this process n times and create a sequence of intervals. Thus 8n 2 N, 9an 2
{0,1,2,3,4,5,6,7,8,9}, such that

x 2


a0 +
a1

10
+ . . .+

an

10n ,a0 +
a1

10
+ . . .+

an +1
10n

◆

or, if we denote
Sn = a0 +

a1

10
+ . . .+

an

10n ,

Sn  x  Sn +
1

10n .

We proved in Proposition 3.4.2, that the sequence {Sn} is a Cauchy sequence. Therefore,

9y 2 R, lim
n!•

Sn = y.

Since we have

y = lim
n!•

Sn  x  lim
n!•

Sn + lim
n!•

1
10n = y , x = y = lim

n!•

⇣
a0 +

a1

10
+ . . .+

an

10n

⌘

and we conclude that x has a decimal representation. ⌅
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Figure 3.4: Construction of the sequence of disjoint subintervals.

Definition 3.4.3
A sequence of intervals {Jn}•

n=1 is said to be a nested sequence of intervals if 8n2N,Jn+1 ⇢ Jn.

Theorem 3.4.4
Assume that {[an,bn]}•

n=1 is a nested sequence of closed intervals such that

lim
n!•

(bn �an) = 0.

Then 9!x 2 R,8n 2 N,x 2 [an,bn] and

lim
n!•

an = lim
n!•

bn = x.

Proof. Since 8n 2 N,8k 2 N, [an+k,bn+k]⇢ [an,bn], i.e an  an+k  bn+k  bn. Thus we have

|an+k �an|= an+k �an  bn �an.

Since limn!•(bn �an) = 0, we have

8e > 0,9N 2 N,8n 2 N,n � N,0 < bn �an < e.

Therefore,
8e > 0,9N 2 N,8n 2 N,n � N,8k 2 N, |an+k �an|< bn �an < e,

hence {an}•
n=1 is a Cauchy sequence. Therefore 9x 2 R such that limn!• an = x.

Similarly,
|bn+k �bn|= bn �bn+k  bn �an < e,

so that {bn}•
n=1 is a Cauchy sequence as well. Therefore 9y 2 R such that limn!• bn = y.

Now, we need to prove that x = y. We know that limn!•(bn � an) = 0. But limn!•(bn � an) =
limn!• bn � limn!• an = y� x hence x� y = 0 , x = y.
The last step to prove is 8n 2 N,x 2 [an,bn]. Since

8k 2 N,an  an+k  bn
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then
an  lim

k!•
an+k = x  bn.

Thus 8n 2 N,x 2 [an,bn]. ⌅

This property is called the completeness of real numbers. The Cauchy convergence is one way of
expressing completeness. The notion of completeness corresponds to the fact that the set of real
numbers does not have any “hole” or there is no “gap” between consecutive numbers. It is clear that
the set of rational numbers is not complete (we cannot represent all numbers by rational numbers,
i.e there are some “gaps” between consecutive rational numbers). It is then easy to understand that
the construction of real numbers made by completing the rational numbers with irrational numbers
gives the completeness property of real numbers.

3.5 Countability
Definition 3.5.1
A set S is said countable if its elements can be listed as a sequence a1,a2,a3, . . .,

S = {an/n 2 N}.

Proposition 3.5.1
The set of rational numbers Q is countable.

Proof. We can list integers Z as

0,1,�1,2,�2,3,�3,4,�4, . . .

thus we can list all possible rational numbers Q in the following way:

0,1,�1,2,�2,
1
2
,�1

2
,3,�3,

1
3
,
2
3
,�1

3
,�2

3
,4,�4,

1
4
,
3
4
,�1

4
,�3

4
, . . .

⌅

R Even if the set of rational numbers is countable, there are infinitely many rational numbers in
any interval. This property is characterized by the notion of density developed in the next
section.

Proposition 3.5.2
The set R is uncountable.

Proof. We prove this proposition by contradiction: assume R is countable then 9{an} which
represents all possible numbers of R.
We have, 8n 2 N, we can write the decimal expansion of an:

an = an,0.an,1an,2an,3 . . .an,k . . .

Denote

bm =

(
0 if am,m 6= 0
1 if am,m = 0

.
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We can build a real number b where its digits are given by the sequence {bm}:

b = b0.b1b2b3 . . .bk . . .

(for example, if a0 = 1.20730;a1 = 0.304;a2 = 3.20863;a3 = 0.83291 . . . then b0 = 0;b1 = 0;b2 =
1;b3 = 0; . . . and b = 0.010 . . .).
We have 8n 2 N,bn 6= an because by construction the nth digit of b is different of the nth digit of
an. Thus we just built a real number b /2 {an} thus {an} do not represent all possible numbers of R
and we get our contradiction so R must be uncountable. ⌅

Lemma 3.5.3
Let A and B be two countable sets then A[B is a countable set.

Proof. Since A and B are countable there exists two sequences {an} and {bn} such that

A = {an/n 2 N} ; B = {bn/n 2 N}.

Define the sequence {cn} such that 8k 2 N,c2k = ak and c2k+1 = bk. Clearly the sequence {cn}
contains all elements of both {an} and {bn} which is equivalent to write

{cn/n 2 N}= A[B.

Therefore A[B is countable. ⌅

Proposition 3.5.4
The set of irrational numbers R\Q is uncountable.

Proof. We prove this proposition by contradiction: assume R\Q is countable then, since Q is
countable and by Lemma 3.5.3, the set Q[ (R\Q) is countable. But Q[ (R\Q) = R which
by Proposition 3.5.2 is uncountable. Then we get a contradiction and conclude that R\Q is
uncountable. ⌅

3.6 Density
Definition 3.6.1
A subset S ⇢ R is dense in R if

8(a,b)⇢ R,9s 2 S,s 2 (a,b).

Proposition 3.6.1
The set of rational numbers Q is dense in R

,8a,b 2 R,a < b,9r 2Q,r 2 (a,b).

Proof. By the Archimedean property of R, we know that

8a,b 2 R,a < b,9n 2 N, 1
n
< b�a.

Using again the Archimedean property of R and the well-ordering of positive integers, we know
that there exists a smallest positive integer k such that

k�1  na  k , k�1
n

 a  k
n
.
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Thus we have
a <

k
n
=

k�1
n

+
1
n
 a+

1
n
< a+(b�a) = b.

Therefore we found that there exists a rational number r = k
n such that 8a,b 2 R,a < b,a < r < b,

this is equivalent to
8(a,b)⇢ R,9r 2Q,r 2 (a,b).

This is exactly the definition that Q is dense in R. ⌅

Theorem 3.6.2
The set of irrational numbers R\Q is dense in R.

,8a,b 2 R,a < b,9s 2 (R\Q),s 2 (a,b).

Proof. We have 8a,b 2 R,a < b, since Q is dense in R, 9q 2Q,q 2
⇣

ap
2
, bp

2

⌘
.

Then
q
p

2 2 (a,b).

Thus assume that q0 = q
p

2 2Q, since the ratio of two rational numbers is also a rational number,
we get that

p
2 = q0

q 2Q is a rational number, hence we reach a contradiction as we proved before
that

p
2 is an irrational number (i.e

p
2 2 R\Q).

Then necessarily, q
p

2 2 R\Q and q
p

2 2 (a,b), i.e

8a,b 2 R,a < b,9s 2 (R\Q),s 2 (a,b).

⌅

3.7 The least upper bound principle
Definition 3.7.1
Let S ⇢ R.

• The number L is called the least upper bound of S if L is the smallest number such that
8x 2 S,x  L.

• The number l is the greatest lower bound of S if l is the greatest number such that
8x 2 S, l  x.

Notation 3.1. The following notations are widely used in the literature:
• the least upper bound of S is also called the supremum of S and is denoted supS,
• the greatest lower bound of S is also called the infimum of S and is denoted infS.

R Let a set S,
L = supS , (8x 2 S,x  L)^ (8e > 0,9x 2 S,L� e < x),

l = infS , (8x 2 S,x � l)^ (8e > 0,9x 2 S,x < l + e).
The statement 8x 2 S,x  L corresponds to the fact that L is an upper bound of S. The
statement 8e > 0,9x 2 S,L� e < x corresponds to the fact that L is the least upper bound.
Similar arguments can be used to justify the statement about infimum.



3.7 The least upper bound principle 33

Proposition 3.7.1
If L = supS and l = infS then 9{xn}•

n=1,{yn}•
n=1 where 8n 2 N,xn 2 S and yn 2 S and

lim
n!•

xn = L ; lim
n!•

yn = l.

Proof. Assume L = supS, from the previous remark, we have 8n 2 N,9xn 2 S such that

L� 1
n
< xn  L

hence
0  L� xn <

1
n
.

Then limn!• xn = L. A similar argument based on the second statement of the previous remark can
be used to show that the existence of {yn} such that limn!• yn = l. ⌅

R The least upper bound of a set S does not necessarily belong to S! For instance:

S =

⇢
1� 1

n
/n 2 N

�
,

then supS = 1 but 1 /2 S. (The same type of argument holds for the greatest lower bound).
If supS 2 S then we say that supS is the maximum value of numbers in S and we use the
notation maxS. Similarly, if infS 2 S then infS is the minimum value of numbers in S and
we use the notation minS.

Theorem 3.7.2 — The least upper bound principle

Let S ⇢ R,S 6=?. We have
• if S is bounded above then supS exists,
• if S is bounded below then infS exists.

Proof. Let us prove the first statement. Assume that S 6= ? and S is bounded above. The idea
consists in using Theorem 3.4.4 on nested sequence, to do so we need to build two sequences
{an}•

n=1 and {bn}•
n=1 such that 8n 2 N,an 2 S and bn is an upper bound of S. We also need the

following properties:
8n 2 N,an  an+1 < bn+1  bn,

bn+1 �an+1 
1
2
(bn �an).

First assume that such sequences exist (we will address their construction below).
From the definition of these sequences, it is clear, by construction, that the sequence of intervals
{[an,bn]}•

n=1 is a sequence of nested intervals. Notice that

8n 2 N,0 < bn �an 
1

2n�1 (b1 �a1) and lim
n!•

(bn �an) = 0.

Thus, by Theorem 3.4.4, 9!x 2 R,8n 2 N,x 2 [an,bn] and limn!• an = limn!•bn = x. We will
prove that x = supS.
Since 8n 2 N,bn are upper bounds of S, we have

8a 2 S,8n 2 N,a  bn,
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Thus
a  lim

n!•
bn = x.

Therefore, x is an upper bound of S. On the other hand, since limn!•(bn �an) = 0, we have

8e > 0,9N 2 N,bN �aN < e.

But since x 2 [aN ,bN ], we have

0  x�aN  bN �aN < e.

Thus since aN 2 S and 8e > 0,aN > x� e , x is the least upper bound of S.
It remains to show that it is actually possible to build such sequences {an}•

n=1 and {bn}•
n=1.

Since S 6=?, 9a1 2 S and since S is bounded above, S has an upper bound M then 9b1 � M and b1
is also an upper bound of S (i.e b1 > a1). Now, consider the midpoint of [a1,b1]: c1 =

1
2(a1 +b1),

we have two possible cases:
• if c1 is an upper bound of S then we set a2 = a1 and b2 = c1 =

1
2(a1 +b1),

S

a1 b1c1

=

a2
=

b2

• if 9a 2 S,a � c1 then we set a2 = a and b2 = b1.
S

a1 b1c1 a

=

a2

=

b2

We can iterate this process n times and get sequences {an}•
n=1 and {bn}•

n=1 with the two afore
mentioned properties. Note that, by construction, we actually get

0 < bn �an =
1

2n�1 (b1 �a1) and lim
n!•

(bn �an) = 0

as desired.
The statement about the greatest lower bound can be established in a similar way. ⌅

3.8 Monotone sequences
Definition 3.8.1
A sequence {an} is said to be

• nondecreasing or increasing if 8n 2 N,an  an+1,
• strictly increasing if 8n 2 N,an < an+1,
• nonincreasing or decreasing if 8n 2 N,an � an+1,
• strictly decreasing if 8n 2 N,an > an+1,

In any of these case, we will say that {an} is monotone.

Theorem 3.8.1 — Monotone convergence principle

A monotone increasing sequence {an} of real numbers that is bounded above has a limit L
and 8n 2 N,an  L.
A monotone decreasing sequence {an} of real numbers that is bounded below has a limit l and
8n 2 N,an � l.

Proof. Assume that {an} is an increasing sequence that is bounded above and denote S = {an/n 2
N}. By the least upper bound principle (Theorem 3.7.2), we have that L = supS exists.


