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Show that
lim
x!2

4(x+3) = 20.

We have 8x 2 R,
| f (x)�20|= |4(x+3)�20|= 4|x�2|.

Therefore, in order to get 8e > 0, | f (x)�20|= 4|x�2|< e , we can choose |x�2|< e
4 = d , thus

8e > 0,9d > 0,d =
e
4
,8x 2 D,x 6= 2, |x�2|< d ) | f (x)�20|< e.

, lim
x!2

4(x+3) = 20.

⌅ Example 4.2
Show that

lim
x!�4

x2 �16
10(x+4)

=� 8
10

.

Note that D = R/{�4}, we have 8x 2 D,
���� f (x)�

✓
� 8

10

◆����=
����

x2 �16
10(x+4)

+
8
10

����=
1

10

����
(x�4)(x+4)

x+4
+8

����=
1

10
|(x�4)+8|= 1

10
|x+4|.

Therefore, in order to get 8e > 0,
�� f (x)+ 8

10

��< e , we can choose |x+4|< 10e = d , thus

8e > 0,9d > 0,d = 10e,8x 2 D,x 6=�4, |x+4|< d )
���� f (x)+

8
10

����< e.

, lim
x!�4

x2 �16
10(x+4)

=� 8
10

.

Definition 4.1.2 — Alternative definition.
Given a function f : D ! R ⇢ R, a point x0 (eventually not in D) and L 2 R (L being finite), we
say that the limit of the function f at x0 is L if and only if

8e > 0,9d > 0,8h 2 D,h 6= 0, |h|< d ) | f (x0 +h)�L|< e,

and we denote
lim

x!x0
f (x) = L.

⌅ Example 4.3
Use this definition in the first example above to show that

lim
x!2

4(x+3) = 20.

We have 8h 2 D,
| f (2+h)�20|= |4(2+h+3)�20|= 4|h|.
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Therefore, in order to get 8e > 0, | f (2+h)�20|= 4|h|< e , we can choose |h|< e
4 = d , thus

8e > 0,9d > 0,d =
e
4
,8h 2 D,h 6= 0, |h|< d ) | f (2+h)�20|< e.

, lim
x!2

4(x+3) = 20.

Definition 4.1.3
Given a function f : D ! R ⇢ R, a point x0 (eventually not in D) and L 2 R (L being finite), we
say that the limit from the right of the function f at x0 is L if and only if

8e > 0,9d > 0,8x 2 D,x0 < x < x0 +d ) | f (x)�L|< e,

and we denote
lim

x!x0+
f (x) = L.

Similarly we say that the limit from the left of the function f at x0 is L if and only if

8e > 0,9d > 0,8x 2 D,x0 �d < x < x0 ) | f (x)�L|< e,

and we denote
lim

x!x0�
f (x) = L.

R The limit of f (x) as x approaches x0 exists , both limits of f (x) as x approaches x0 from the
right and from the left exist and are equal, i.e

lim
x!x0

f (x) = L ,
✓

lim
x!x0+

f (x) = L
◆
^
✓

lim
x!x0�

f (x) = L
◆
.

Theorem 4.1.1 — Sequential characterization of limits
Given a function f : D ! R and a point x0 (eventually not in D), then limx!x0 f (x) = L , for
any sequence {xn} where 8n 2N,xn 2 D and where limn!• xn = x0, we have limn!• f (xn) = L.

Proof. ): Assume

lim
x!x0

f (x) = L ,8e > 0,9d > 0,8x 2 D,x 6= x0, |x� x0|< d ) | f (x)�L|< e.

Let an arbitrary sequence {xn} where 8n 2 N,xn 2 D and

lim
n!•

xn = x0 ,8e 0,9N 2 N,8n 2 N,n � N, |xn � x0|< e 0.

In particular, for e 0 = d we have

9N 2 N,8n 2 N,n � N, |xn � x0|< d .

By the assumption, this implies that | f (xn)�L|< e . Therefore

8e > 0,9N 2 N,8n 2 N,n � N, | f (xn)�L|< e , lim
n!•

f (xn) = L.
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(: Assume that for any sequence {xn} where 8n 2 N,xn 2 D such that limn!• xn = x0 and
limn!• f (xn) = L.
We want to show that

lim
x!x0

f (x) = L ,8e > 0,9d > 0,8x 2 D,x 6= x0, |x� x0|< d ) | f (x)�L|< e.

We proceed by contradiction: assume

9e > 0,8d > 0,9x 2 D,x 6= x0,(|x� x0|< d )^ (| f (x)�L|� e) .

But if we set d = 1
n then we can build a sequence {xn} such that 8n 2 N,

�
|xn � x0|< 1

n

�
^

(| f (xn)�L|� e). Since limn!• |xn � x0| < limn!•
1
n = 0, we get limn!• xn = x0. Thus we can

build a sequence which is converging to x0 and the sequence { f (xn)} does not converge to L which
contradicts the initial assumption. Therefore

8e > 0,9d > 0,8x 2 D,x 6= x0, |x� x0|< d ) | f (x)�L|< e , lim
x!x0

f (x) = L.

⌅

Theorem 4.1.2
Assume that f : [a,b]! R is an increasing or decreasing function. Then

8c 2 (a,b), lim
x!c�

f (x) and lim
x!c+

f (x) exist.

In addition, if f is increasing, we have

lim
x!c�

f (x) f (c) lim
x!c+

f (x).

If f is decreasing, we have
lim

x!c�
f (x)� f (c)� lim

x!c+
f (x).

The limits limx!a+ f (x) and limx!b� f (x) exist as well.

Proof. Consider the case when f is increasing and let c 2 (a,b). Let

S = { f (x)/c < x  b}.

Since f is increasing, f (c) is a lower bound of S. Therefore, L = infS exists.
We will prove that limx!c+ f (x) = L.
Let an arbitrary e > 0, by the definition of the greatest lower bound of a set, there exists d > 0 such
that c+d  b and

f (c) f (c+d )< L+ e.
Since f is increasing, we have

8x,c < x < c+d , f (c) f (x) f (c+d )< L+ e.

Since L is a lower bound of the values f (x) in (c,b], we have

8x,c < x < c+d ,L  f (x) f (c+d )< L+ e , lim
x!c+

f (x) = L exists.

Since 8e > 0, f (c)< L+ e , we have f (c) L = limx!c+ f (x).
To prove that limx!c� f (x) exists and that limx!c� f (x) f (c), it is sufficient repeat the same steps
by considering supS where S is now defined by

S = { f (x)/a  x < c}.

The case of decreasing functions can be proven in a similar way. ⌅
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Theorem 4.1.3 — Cauchy condition for the limit of a function
Assume that

• f (x) is defined for x 2 (c,c+d0), 8d0 2 R. If

8e > 0,9d > 0,d  d0,8u,v 2R,(c < u < c+d )^ (c < v < c+d )) | f (u)� f (v)|< e.

Then limx!c+ f (x) exists.
• f (x) is defined for x 2 (c�d0,c), 8d0 2 R. If

8e > 0,9d > 0,d  d0,8u,v 2R,(c�d < u < c)^ (c�d < v < c)) | f (u)� f (v)|< e.

Then limx!c� f (x) exists.

Proof. We prove only the first statement, the second one by be proven in a similar way.
We know that

8d0 2R,8e > 0,9d > 0,d  d0,8u,v 2R,(c < u < c+d )^ (c < v < c+d )) | f (u)� f (v)|< e.

In particular, for d0 = 1 and e = 1,

9d1 > 0,d1  1,8u,v 2 R,(c < u < c+d1)^ (c < v < c+d1)) | f (u)� f (v)|< 1.

Choosing x1 such that c < x1 < c+d1 < c+1 and if c < u < c+d1 we get

| f (u)� f (x1)|< 1.

In the same way, for d0 = min(1/2,d1),e = 1
2 :

9d2 < min(1/2,d1) such that we can select a point x2 where c < x2 < c + d2 < c + 1
2 and if

c < u < c+d2 we have

| f (u)� f (x2)|<
1
2
.

Notice that
| f (x1)� f (x2)|< 1.

We can iterate this process n times and build two sequences x1 > x2 > x3 > .. . > xn and d1 > d2 >
d3 > .. . > dn such that

c < xk < c+dk < c+
1
k
,

and if c < u < c+dk for k = 1,2, . . . ,n we have

| f (u)� f (xk)|<
1
k
.

Therefore, we have
lim
n!•

xn = c.

Notice that
| f (xn+k)� f (xn)|<

1
n
.

Thus, 8e > 0,9N 2 N, 1
N < e and 8n 2 N,n � N,8k 2 N we have

| f (xn+k)� f (xn)|<
1
n
<

1
N

< e.
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Therefore, { f (xn)} is a Cauchy sequence and hence converges, i.e 9L 2 R, limn!• f (xn) = L.
We will prove now that limx!c+ f (x) = L. We have 8e > 0,9N1 2 N,N1 > 2/e . Thus, if 8x,c <
x < c+dN1 we have 8n 2 N,

| f (x)�L| | f (x)� f (xn)|+ | f (xn)�L|.

If we choose n � N1 we get

| f (x)�L| 1
N1

+ | f (xn)�L|< e
2
+ | f (xn)�L|.

Since limn!• f (xn) = L,

8e > 0,9N2 2 N,8n 2 N,n � N2, | f (xn)�L|< e
2
.

Set N = max(N1,N2) we obtain

8e > 0,9dN 2 R,8x,c < x < c+dN ) | f (x)�L|< e.

, lim
x!c+

f (x) = L.

⌅

4.2 Infinite limits
Definition 4.2.1
Let a function f : D ! R ⇢ R.

• limx!x0 f (x) = +• ,8M > 0,9d > 0,8x 2 D,x 6= x0, |x� x0|< d ) f (x)> M.
• limx!x0+ f (x) = +• ,8M > 0,9d > 0,8x 2 D,x0 < x < x0 +d ) f (x)> M.
• limx!x0� f (x) = +• ,8M > 0,9d > 0,8x 2 D,x0 �d < x < x0 ) f (x)> M.
• limx!x0 f (x) =�• ,8M > 0,9d > 0,8x 2 D,x 6= x0, |x� x0|< d ) f (x)<�M.
• limx!x0+ f (x) =�• ,8M > 0,9d > 0,8x 2 D,x0 < x < x0 +d ) f (x)<�M.
• limx!x0� f (x) =�• ,8M > 0,9d > 0,8x 2 D,x0 �d < x < x0 ) f (x)<�M.

R It is easy to check that

lim
x!x0

f (x) =�• , limx!x0(� f (x)) = +•.

⌅ Example 4.4
Let

f (x) =
1

(x+3)(x�2)
.

Prove that limx!2+ f (x) = +• and limx!2� f (x) =�•
Solution: we first address the case limx!2+ f (x) = +•:
We can restrict x such that 2 < x < 3, thus 5 < x+3 < 6 and 1

x+3 > 1
6 . Therefore

f (x) =
1

(x+3)(x�2)
>

1
6(x�2)

.

In order to have 8M > 0, f (x)> M it is sufficient to have

1
6(x�2)

> M , 0 < x�2 <
1

6M
, 2 < x < 2+

1
6M

.
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Keeping in mind the constraint x < 3 = 2+1, we can set d = min(1, 1
6M ). Thus we obtain,

8M > 0,9d > 0,d = min
✓

1,
1

6M

◆
,8x 2 D,2 < x < 2+d ) f (x)> M

, lim
x!2+

f (x) = +•.

For the second case, limx!2� f (x) =�•, it is generally easier to prove limx!2�(� f (x)) = +•.
We have x < 2 thus x+3 < 5 and 1

x+3 > 1
5 . Therefore

� f (x) =
1

(x+3)(2� x)
>

1
5(2� x)

.

In order to have 8M > 0,� f (x)> M it is sufficient to have

1
5(2� x)

> M , 0 < 2� x <
1

5M
, 2� 1

5M
< x < 2.

If we set d = 1
5M , we finally get

8M > 0,9d > 0,d =
1

5M
,8x 2 D,2�d < x < 2 )� f (x)> M

, lim
x!2�

f (x) =�•.

Proposition 4.2.1
Assume that 8x 2 (a,b), f (x)> 0, let x0 2 (a,b) such that limx!x0 f (x) = 0. Then

lim
x!x0

1
f (x)

= +•.

Assume that 8x 2 (a,b), f (x)< 0, let x0 2 (a,b) such that limx!x0 f (x) = 0. Then

lim
x!x0

1
f (x)

=�•.

Proof. We prove only the first statement, the second one can be proven in a similar way. We follow
a similar argument as in the proof of Proposition 3.9.2. Since 8x 2 (a,b), f (x)> 0,x0 2 (a,b) and
limx!x0 f (x) = 0, we have

8e > 0,9d > 0,8x 2 (a,b),x 6= x0, |x� x0|< d ) | f (x)�0|< e.

Denote M = 1
e , then we have

8M > 0,9d > 0,8x 2 (a,b),x 6= x0, |x� x0|< d ) | f (x)�0|< 1
M
.

,8M > 0,9d > 0,8x 2 (a,b),x 6= x0, |x� x0|< d ) 1
f (x)

> M.

, lim
x!x0

1
f (x)

= +•.

⌅


