Math336 HW2 (Spring 2020)

Professor Youngjoon Hong

Due Date: Feb. 27 (3:30 pm)

Problem 1 A necessary condition of fitting a straight line with the least-squares yields the equations

$$a\sum_{i=1}^{m} x_i^2 + b\sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i,$$

$$a\sum_{i=1}^{m} x_i + mb = \sum_{i=1}^{m} y_i.$$
(1)

Derive slope a and b (show all of your work for full credit).

Problem 2 Make an appropriate transformation to fit the model $P = ae^{bt}$ using Eq. (1) above. Estimate a and b.

t	$\tilde{7}$	14	21	28	35	42
P	8	41	133	250	280	297

Problem 3 In the following data, W represent the weight of a fish and l represents its length. Fit the model $W = kl^3$ to the data using the least-squares criterion.

Length (l)	14.5	12.5	17.25	14.5	12.625	17.75	14.125	12.625
Weight (w)	27	17	41	26	17	49	23	16

Problem 4 Solving the following problem using graphical analysis: Maximize 10x + 35y subject to:

 $\begin{array}{ll} 8x+6y\leq 48, & (board\ fit\ lumber),\\ 4x+y\leq 20, & (hr\ of\ carpentry),\\ y\geq 5, & (demand),\\ x,y\geq 0 & (non\ negativity). \end{array}$